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Abstract

We consider the testing problem associated with the panel or longitudinal fractional
Ornstein-Uhlenbeck (fO-U) processes driven by independent fractional Brownian motions
(fBms), where the sign of the drift parameter of each fO-U process is tested, assuming that
the Hurst parameter H is known. Since the test has a trivial consistent property against
a fixed alternative, we employ the local alternative hypothesis that the drift parameter
is close to the null in the order of 1/(TNη), where T is the sampling span and N is the
cross section dimension with 0 < η < 1. Then, for a given value of H , we compute the
local power as N increases with any T .

1. Introduction

The present paper deals with the panel or longitudinal fO-U process defined on the
time interval [0, T ]. By ‘panel’ or ‘longitudinal’ it is meant in the present context that
data contain multiple observations in the cross section direction at each time for each
process. For this purpose let us consider the fO-U process at the ith cross section, whose
stochastic differential is given by

dYi(t) = αiYi(t) dt+ dBi(t), Yi(0) = 0, (i = 1, . . . , N, 0 ≤ t ≤ T ), (1)

where αi (∈ R) is an unknown drift parameter and N is the cross-section dimension,
whereas {Bi(t)} is the fBm of the known Hurst parameter H ∈ (0, 1). It is assumed that
{Bi(t)} (i = 1, . . . , N) are independent of each other. Note that {Bi(t)} reduces to the
standard Brownian motion when H = 1/2. The fO-U process {Yi(t)} is referred to as the
ergodic case when αi < 0, as the non-ergodic case when αi > 0, and as the boundary case
when αi = 0. Note that the stochastic differential in (1) is equivalent to

Yi(t) = eαit
∫ t

0
e−αis dBi(s), (i = 1, . . . , N, 0 ≤ t ≤ T ). (2)

The main purpose of the present paper is to discuss the testing problem given by

H0 : αi = 0 versus HL
1 : αi < 0, (i = 1, . . . , N), (3)

which tests against the ergodic case, or

H0 : αi = 0 versus HR
1 : αi > 0, (i = 1, . . . , N), (4)

which tests against the non-ergodic case. Note that Yi(t) reduces to Bi(t) under H0. Of
course some other alternatives are possible when N > 1, but we restrict our attention to
the above cases because of simplicity.
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The test statistic we consider here is based on the maximum likelihood estimator
(MLE) of α = (α1, . . . , αN)

′. The likelihood for α is given, from Kleptsyna and Le
Breton (2002), by

ℓ(α) = exp

[

N
∑

i=1

αi

∫ T

0
Qi(t) dZi(t)−

1

2

N
∑

i=1

α2
i

∫ T

0
Q2

i (t) dw(t)

]

, (5)

where

Qi(t) =
d

dw(t)

∫ t

0
k(t, s)Yi(s) ds, Zi(t) =

∫ t

0
k(t, s) dYi(s), (6)

w(t) = λ−1t2−2H , k(t, s) = κ−1(s(t− s))1/2−H , (7)

with λ = 2HΓ(3− 2H)Γ(H + 1/2)/Γ(3/2−H) and κ = 2HΓ(3/2−H)Γ(H + 1/2).
The sample paths of the process Qi(t) in (6) belong to L2([0, T ], dw). The process

Zi(t) in (6) is a Gaussian semimartingale so that
∫ T
0 Qi(t) dZi(t) is the Ito integral and it

has the decomposition

Zi(t) = αi

∫ t

0
Qi(s) dw(s) +Mi(t) , Mi(t) =

∫ t

0
k(t, s) dBi(s), (8)

where Mi(t) is the fundamental martingale with the quadratic variation w(t) in (7) and
Cov(Mi(s),Mi(t)) = λ−1(min(s, t))2−2H , which was discussed in Norros et al. (1999) in
connection with approximating Bi(t) by Mi(t).

When N = 1, this testing problem was earlier discussed in Moers (2012), Tanaka (2013,
2015), and Kukush et al. (2017). One important necessity for the present test is that
the methods of constructing the estimators and their asymptotic properties essentially
depend on the sign of the drift parameter (Kukush et al. (2017)). In connection with
econometric problems, the present test is referred to as the unit root test. This is because
of the relationship between the fO-U process and the discrete-time near-unit root process
defined by

yj = ρyj−1 + vj , ρ = 1 +
α

n
, y0 = 0, (j = 1, ..., n), (9)

where the error process {vj} is a stationary long-memory process generated by

vj = (1− L)−(H−1/2)εj =
∞
∑

k=0

Γ(k +H − 1/2)

Γ(H − 1/2)Γ(k + 1)
εj−k, (10)

with 1/2 < H < 1, L being the lag-operator, and {εj} ∼ i.i.d.(0, σ2). Then it holds
(Davydov (1970)) that

const.

nH
y[nt] ⇒ eαt

∫ t

0
e−αs dB(s), (0 ≤ t ≤ 1),

where ⇒ signifies weak convergence as n → ∞. The discrete-time process {yj} in (9) is
said to have a unit root when α = 0. Thus the testing problem for α = 0 is called the unit
root test. Note that the parameter α in (9) plays the same role as the drift parameter αi

in the fO-U process in (1) or (2).
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Returning to the panel fO-U process in (1), suppose first that N = 1 and let us proceed
without the subsript i for each quantity. Then the MLE of α is given for any H ∈ (0, 1)
by

α̃(T ) =

� T
0 Q(t) dZ(t)

� T
0 Q2(t) dw(t)

= α +

� T
0 Q(t) dM(t)

� T
0 Q2(t) dw(t)

. (11)

In particular, when α = 0, we have Y (t) = B(t) and the self-similarity property of B(t)
yields

T α̃(T ) =

� 1
0 Q(t) dM(t)

� 1
0 Q2(t) dw(t)

, (α = 0), (12)

which shows that the distribution of T α̃(T ) does not depend on T when α = 0.
Although α̃(T ) is defined in the same way for any α, unlike the least squares estimator

(LSE), its asymptotic distribution as T → ∞ is different among the signs of α because it
holds that

α̃(T )− α =































Op(T
−1/2) (α < 0),

Op(e
−αT ) (α > 0),

Op(T
−1) (α = 0),

T α̃(T ) →































−∞ (α < 0),

+∞ (α > 0),

Op(1) (α = 0).

(13)

More specifically, it holds that, for α < 0,
√
T (α̃(T )− α) ⇒ N(0, −2α),

which was proved in Kleptsyna and Le Breton (2002), whereas, for α > 0,

eαT (α̃(T )− α)

2α
⇒

√
sin πH × C(0, 1),

where C(0, 1) is a standard Cauchy random variable, which was proved in Tanaka (2015).
Then we have

T α̃(T ) =



































√
T
√
T (α̃(T )− α) + Tα = −O(T ) (α < 0),

2αTe−αT e
αT (α̃(T )− α)

2α + Tα = O(T ) (α > 0),

Op(1) (α = 0).

It follows that the test based on α̃(T ) is consistent and has trivial limting powers as
T → ∞ against α < 0 and α > 0. Moreover we have the following theorem.

Theorem 1. For the fO-U process in (1) with N = 1, let us consider the testing problems
(3) and (4). Then the powers of the tests based on α̃(T ) in (11) do not depend on each
value of α and T , but on α× T .

It follows from Theorem 1 that the present test is consistent and has trivial limiting
powers as T → ∞ or |α| → ∞. Because of this fact there is no point in examining
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limiting powers as T → ∞ or |α| → ∞. Instead we pursue limiting local powers under
a sequence of local alternatives which depend on the sampling interval T and the cross
section dimension N .

In Section 2, dealing with the panel fO-U process in (1), we consider the local alter-
native H1 : αi = δN/T , where δN = δ/Nη with δ being a fixed constant and η ∈ (0, 1).
We present a feasible way of computing finite sample local powers as well as limiting local
powers of the MLE-based test as N → ∞. Section 3 demonstrates that the MLE-based
test is asymptotically efficient. Section 4 presents graphically the local powers at the 5%
level for any value of T and various values of N including N = ∞. Section 5 concludes this
paper, where the difficulty of the LSE-based test is mentioned together with an extension
of the present test. The proofs of theorems are given in the Appendix.

2. Powers under the local alternative

In this section we deal with the testing problems in (3) and (4), where we consider the
local alternatives given by

H1 : αi =
δN
T

, δN =
δ

Nη
, (14)

where δ is a constant with δ < 0 being the ergodic alternative and δ > 0 being the
non-ergodic alternative, whereas η ∈ (0, 1) is determined later so that the limiting power
becomes nontrivial as N → ∞.

We consider a test based on the MLE of α = (α1, . . . , αN)
′. For this purpose the

MLE of α is computed under the assumption that αi = α for i = 1, . . . , N . Then the
MLE of α is given from (5) as

α̃(N, T ) =

∑N
i=1

∫ T
0 Qi(t) dZi(t)

∑N
i=1

∫ T
0 Q2

i (t) dw(t)
=

∑N
i=1 Ui(T )

∑N
i=1 Vi(T )

, (15)

where

Ui(T ) =
∫ T

0
Qi(t) dZi(t), Vi(T ) =

∫ T

0
Q2

i (t) dw(t). (16)

To compute the distribution of α̃(N, T ) the following property is useful.

Theorem 2. It holds that, under H0 : α = 0 and H1 : αi = α = δN/T ,

T α̃(N, T ) =

1

T

N
∑

i=1

∫ T

0
Qi(t) dZi(t)

1

T 2

N
∑

i=1

∫ T

0
Q2

i (t) dw(t)

D
=

N
∑

i=1

∫ 1

0
Qi(t) dZi(t)

N
∑

i=1

∫ 1

0
Q2

i (t) dw(t)

=

∑N
i=1 Ui(1)

∑N
i=1 Vi(1)

, (17)

where ‘
D
= ’ stands for the distributional equivalence.

We now use T α̃(N, T ) as a test statistic. For the ergodic alternative with α < 0, the
null hypothesis of α = 0 is rejected when T α̃(N, T ) is small and the power of the test
at the 100 γ% is computed as P (T α̃(N, T ) < zγ), where zγ is the 100γ% point of the
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null distribution of T α̃(N, T ). The following theorem describes how to compute the local
power against the ergodic alternative when N is finite.

Theorem 3. The power of the present test at the 100γ% level against HL
1 : α = δN/T

with δN < 0 is computed as

P (T α̃(N, T ) < zγ) =
1

2
+

1

π

∫

∞

0

1

θ
Im[{m(−iθ, iθzγ)}N ] dθ. (18)

Here zγ is the 100γ% point of the null distribution of T α̃(N, T ) and m(θ1, θ2) is the joint
moment generating function (m.g.f.) of Ui(1) and Vi(1) given by

m(θ1, θ2) = E
[

exp {θ1Ui(1) + θ2Vi(1)}
]

= e−(δN+θ1)/2

[(

1 +
(δN + θ1)

2

µ2

)

cosh2 µ

2
− δN + θ1

µ
sinh µ

+
π

4 sin πH

{

−(δN + θ1)
2

µ
I−H

(

µ

2

)

IH−1

(

µ

2

)

+µI−H+1

(

µ

2

)

IH

(

µ

2

)}]−1/2

, (19)

where µ =
√

δ2N − 2θ2, whereas Iν(z) is the modified Bessel function of the first kind
defined by

Iν(z) =
∞
∑

k=0

(z/2)ν+2k

k!Γ(ν + k + 1)
.

The local power against the non-ergodic alternative at the 100γ% level is computed as
P (T α̃(N, T ) > z1−γ). The m.g.f. in (19) was first obtained in Kleptsyna and Le Breton
(2002) (see also Tanaka (2015)). It is noticed in (19) that the m.g.f. remains the same
when H is replaced by 1 − H . This means that the MLE under H is the same as that
under 1 − H . Thus the MLE can be applied to 0 < H < 1, and the distribution of the
MLE is symmetric around H = 1/2.

The powers of the test at the 5% level will be presented in Section 4 for various values
of N including N = ∞, paying attention to the effect of the Hurst index H .

We next discuss how to compute the limiting power of the test as N → ∞. For this
purpose we have

Theorem 4. Consider T α̃(N, T ) =
∑N

i=1 Ui(1)/
∑N

i=1 Vi(1) under α = δN/T . When
δN → 0 as N → ∞ with any T , it holds that

E(Ui(1)) =
∂m(θ1, 0)

∂θ1

∣

∣

∣

∣

∣

θ1=0

= βHδN +O(δ2N), (20)

E(U2
i (1)) =

∂2m(θ1, 0)

∂θ21

∣

∣

∣

∣

∣

θ1=0

= βH + 3γHδN +O(δ2N), (21)

E(Vi(1)) =
∂m(0, θ2)

∂θ2

∣

∣

∣

∣

∣

θ2=0

= βH + γHδN +O(δ2N), (22)
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where

βH =
1

4
+

1

16H(1−H)
, γH =

1

12
+

1

16H(1−H)
.

We note that the above results for H = 1/2 were earlier obtained for discrete-time
panel unit root models in econometrics (Tanaka (2017)). Let us consider the situation
where N → ∞. It follows from Theorem 4, the law of large numbers (LLN) and the
central limit theorem (CLT) that, as N → ∞,

1

N

N
∑

i=1

Vi(1) → βH in probability, (23)

1√
N

N
∑

i=1

Ui(1) ⇒ N(
√
NδNβH , βH), (24)

which leads us to establish

Theorem 5. Suppose that δN = δ/
√
N = Tα, where δ is a constant. Then it holds that,

as N → ∞ with any T , it holds that

√
NTα̃(N, T ) =

1√
N

N
∑

i=1

Ui(1)

1

N

N
∑

i=1

Vi(1)

⇒ N

(

δ,
1

βH

)

, (25)

P (
√
NT

√

βHα̃(N, T ) ≤ zγ) → Φ(zγ −
√

βHδ), (26)

where Φ(·) is the distribution function of N(0,1).

It follows from Theorem 5 that the local alternative which yields a nontrivial result
is of the form α = δ/(T

√
N) and the limiting local power as N → ∞ can be computed

from (26). Note that the asymptotic normality holds under the local alternative with any
negative or positive δ. This contrasts with the case of the fixed alternative with a positive
constant α, for which the statistic tends to Cauchy distribution.

The next section demonstrates that the MLE-based test discussed in this section is
asymptotically efficient.

3. Asymptotic efficiency of the MLE-based test

Suppose that the panel fractional O-U model is given by

dYi(t) = αiYi(t) dt+ dBi(t), αi =
δ

T
√
N
, (27)

and consider the testing problem

H0 : αi = 0 vs. H1 : αi =
θ

T
√
N
, (i = 1, . . . , N), (28)
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where θ is a given constant. This is a test against a simple alternative.
Then the Neyman-Pearson lemma tells us that the test rejects H0 when

ℓ

(

θ

T
√
N

)

− ℓ(0)

takes large values is the most powerful (MP), where ℓ(α) is the likelihood for α given by

ℓ(α) = exp

[

α
N
∑

i=1

∫ T

0
Qi(t) dZi(t)−

α2

2

N
∑

i=1

∫ T

0
Q2

i (t) dw(t)

]

.

Thus the MP test rejects H0 when

SNT (θ) =
θ

T
√
N

N
∑

i=1

∫ T

0
Qi(t) dZi(t)−

θ2

2T 2N

N
∑

i=1

∫ T

0
Q2

i (t) dw(t)

D
=

θ√
N

N
∑

i=1

∫ 1

0
Qi(t) dZi(t)−

θ2

2N

N
∑

i=1

∫ 1

0
Q2

i (t) dw(t)

takes large values. It follows from (23) and (24) that the MP statistic SNT (θ) converges
to

SNT (θ) ⇒ θ
√

βH X − θ2βH

2
, X ∼ N

(

δ
√

βH , 1

)

. (29)

Thus it holds that

P

(

SNT (θ) + θ2βH/2

θ
√
βH

< zγ

)

→ P (X < zγ)

= Φ

(

zγ − δ
√

βH

)

. (30)

It is seen that the power function does not depend on θ, which implies that the MP
test based on SNT (θ) is UMP, and the MLE-based test is asymptotically efficient because
the two power functions coincide.

4. Computation of local powers

Here we report powers of our tests against the ergodic and non-ergodic alternatives
at the 5% significance level. For this purpose we first compute the 5% and 95% points of
the null distribution of the statistic T α̃(N, T ) for various values of N and H . These can
be obtained from (18) by putting δN = 0. Table 1 reports these percent points for N =
1, 10, 50 and H = 0.5, 0.7, 0.9. It is recognized that, for each N , the statistic becomes
slightly more concentrated as H gets away from H = 0.5. Note that the distirbutions
remain unchanged with H replaced by 1−H .
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Table 1. 5% and 95% points of the distribution of T α̃(N, T ) under α = 0

(N, H)
(1, 0.5) (1, 0.7) (1, 0.9) (10, 0.5) (10, 0.7) (10, 0.9) (50, 0.5) (50, 0.7) (50, 0.9)

5%
−8.039 −7.964 −7.415 −1.100 −1.057 −0.805 −0.388 −0.371 −0.279

95%
1.285 1.250 1.084 0.560 0.537 0.427 0.287 0.274 0.213

Figure 1 draws the null densities of
√
NTα̃(N, T ) for N = 1 with H = 0.5, 0.7, 0.9

and Figure 2 for N = 50 with the same values of H . Note that we have added
√
N to the

factor so that the distribution does not depend on N asymptotically. In fact it follows
from Theorem 5 that

√
NTα̃(N, T ) ⇒ N(0, 1/βH) as N → ∞. It is seen from these

figures that

(a) When N = 1, the distribution is far from normal. The distribution for N = 1 with
H = 0.5 is called the unit root distribution in econometrics. As N becomes large,
however, it tends to normal with the mean 0 because of the CLT.

(b) For fixed N , the distribution becomes slightly more concentrated as H gets away
from H = 0.5, as was also recognized in Table 1.
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Figure 3 shows the densities of
√
NTα̃(N, T ) under the local ergodic alternative α =

δ/(
√
NT ) with δ = −1 and N = 1, whereas Figure 4 shows those densities with δ = −1

and N = 50. When N = 1, these densities are still skewed to the left, but not so much
as the null densities shown in Figure 1. When N = 50, these are quite close to the
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density of N(−1, 1/βH), where δ = −1 and βH = 1/4 + 1/(16H(1−H)). It follows that
the distribution becomes more concentrated as H gets away from H = 0.5. Figure 5
draws the corresponding densities under the local non-ergodic alternative with δ = 1 and
N = 50. These densities are close to those of N(1, 1/βH).
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Figure 6 presents the local powers of the test against the ergodic alternative with
H = 0.7. The powers for N < ∞ were computed from (26). The limiting power for
N = ∞ is also shown, which was computed from (18). It is seen that the finite sample
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powers increase with N and converge to the limiting power from below. This is not
trivial because the local alternative with δN = δ/

√
N is in the neighborhood of the null

in the order of 1/
√
N , which converges to the null. The fact that the covergence of finite

sample powers to the limiting power from below is specific to the ergodic alternative. It
will be seen in Figure 8 that the finite sample powers against the non-ergodic alternative
converge from above to the limiting power. Figure 7 compares, amongH , the finite sample
performance of the test against the ergodic alternative when N = 10. It is seen that the
test is more powerful when H gets away from H = 0.5.

Figure 8 shows the finite sample and limiting local powers against the non-ergodic
alternative with H = 0.7. It is seen that the power performance is different between the
ergodic and non-ergodic alternatives. The test is more powerful against the non-ergodic.
It is also seen that the finite sample powers converge to the limiting power from above,
as was mentioned before.
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5. Concluding remarks

We have considered the MLE-based test for the sign of the drift parameter in the
panel fO-U process with the Hurst index H known, which tests for the process to be
the fBm against the ergodic or non-ergodic fO-U process. Because the test is consistent
against the fixed alternative as the cross section dimension N → ∞, we have assumed a
local alternative close to the null in the order of T−1N−η, where T is any time span and
0 < η < 1. It was found that η = 1/2 yields a non-trivial power as N → ∞. It was
also demonstrated that the MLE-based test is asymptotically efficient in the sense that
the power function of the MP test coincides with that of the MLE-based test. The power
performance of the test was examined for various values of N including N = ∞ by paying
attention to the effect of the value of H .

The present model may be extended to the fractional Vasicek model

dYi(t) = (αiYi(t) + µi) dt+ dBi(t), Yi(0) = 0, (i = 1, . . . , N, 0 ≤ t ≤ T ).
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For the time series case with N = 1, the MLEs of µ = µi and α = αi were discussed in
Tanaka et al. (2020).

It is also interesting to compare the power of the present test with that of the LSE-
based test. Tanaka (2020) compared the LSE and MLE in the case of N = 1. Suppose
that H ∈ (1/2, 1). Then, assuming α = αi (i = 1, . . . , N), the LSE of α in (1) is given
by

α̂ =

∑N
i=1

∫ T
0 Yi(t) dYi(t)

∑N
i=1

∫ T
0 Y 2

i (t) dt
=

∑N
i=1 Y

2
i (T )/2

∑N
i=1

∫ T
0 Y 2

i (t) dt
,

where the integral in the numerator is of Riemann-Stieltjes type. It might be argued
that the power of the LSE-based test could be computed in the same way as that of the
MLE-based test. This, however, is not the case because the joint m.g.f. of Y 2

i (T ) and
∫ T
0 Y 2

i (t) dt has never been derived even under the null H0 : α = 0. In fact, the joint
m.g.f. of B2

i (T ) and
∫ T
0 B2

i (t) dt is unknown, although an approximation was suggested in
Tanaka (2014). This is a topic for future research.

In the present paper the cross-sectional independence was assumed, that is, the frac-
tional Brownian motions B1(t), . . . , BN(t) which generate the panel fO-U processes are
independent of each other. An extension to the cross-sectional dependence is also another
topic to be pursued.

Appendix

Proof of Theorem 1: Let xγ(T ) be the 100γ% point of the null distribution of α̃(T ) under
the sampling interval T . Then the power of the test against α < 0 at the significance
level γ is computed, by using the formula in Imhof (1961), as

P (α̃(N, T ) < xγ(T )) =
1

2
+

1

π

∫

∞

0

1

θ
Im

[

m
(

− iθ, iθxγ(T )
)]

dθ

=
1

2
+

1

π

∫

∞

0

1

u
Im

[

m
(

− iu/T, iuxγ(T )/T
)]

du,

where m(θ1, θ2) is the m.g.f. of Ui(T ) and Vi(T ) in (16), which is given by Kleptsyna and
Le Breton (2002) as

m(θ1, θ2) = e−T (α+θ1)/2

[(

1 +
(α + θ1)

2

µ2

)

cosh2 µT

2
− α + θ1

µ
sinh µT

+
πT

4 sinπH

{

−(α + θ1)
2

µ
I−H

(

µT

2

)

IH−1

(

µT

2

)

+µI−H+1

(

µT

2

)

IH

(

µT

2

)}]−1/2

, (A.1)

where µ =
√
α2 − 2θ2. Then it holds that

g(u) = m
(

− iu/T, iuxγ(T )/T
)

= e(iu−αT )/2

[(

1 +
(αT − iu)2

4ξ2

)

cosh2 ξ − αT − iu

2ξ
sinh 2ξ

+
π

4 sinπH

{

−(αT − iu)2

2ξ
I−H(ξ)IH−1(ξ) + 2ξI−H+1(ξ)IH(ξ)

}]−1/2

,
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where

ξ =
1

2

�

(αT )2 − 2iuTxγ(T ) =
1

2

�

(αT )2 − 2iuxγ(1).

This last equality, that is, Txγ(T ) = xγ(1), comes from (12). Then it is seen from the
form of g(u) that the power depends only on α× T , and does not depend on each value
of α and T , which establishes Theorem 1.

Proof of Theorem 2: Let us denote the m.g.f. m(θ1, θ2) in (A.1) as m(θ1, θ2; α, T ) to
express its dependence on α and T explicitly. Then it can be checked that, for α = δN/T ,
the joint m.g.f. of

�N
i=1 Ui(T )/T and

�N
i=1 Vi(T )/T

2 is given by

mN (θ1, θ2) =
�

m(θ1/T, θ2/T
2; δN/T, T )

�N
=

�

m(θ1, θ2; δN , 1)
�N

,

which means that the joint distribution of
�N

i=1 Ui(T )/T and
�N

i=1 Vi(T )/T
2 with α =

δN/T is the same as that of
�N

i=1 Ui(1) and
�N

i=1 Vi(1) with α = δN . This also holds for
α = 0. Thus Theorem 2 is established.

Proof of Theorem 3: It follows from Theorem 2 that

P (T α̃(N, T ) < zγ) = P

�

N
�

i=1

Ui(1) < zγ
N
�

i=1

Vi(1)

�

,

which yields (18) because of the formula in Imhof (1961). Then Theorem 3 is established
from Kleptsyna and Le Breton (2002).

Proof of Theorem 4: Let m(θ1, θ2) be the joint m.g.f. of Ui(1) and Vi(1) under α = δN/T ,
which is given in (19). Then we have, for δN �= 0,

m(θ, 0) = e−(δN+θ)/2

��

1 +
(δN + θ)2

δ2N

�

cosh2 δN
2

− δN + θ

δN
sinh δN

+
π

4 sinπH

�

−(δN + θ)2

δN
I−H

�

δN
2

�

IH−1

�

δN
2

�

+δNI−H+1

�

δN
2

�

IH

�

δN
2

���−1/2

,

E(Ui(1)) =
dm(θ, 0)

d θ

�

�

�

�

�

θ=0

= −1

2
− 1

2
eδN

�

1

δN
+

1

δN
e−δN − π

2 sin πH
I−H

�

δN
2

�

IH−1

�

δN
2

��

,

= −1

2

�

1 +
1

δN
+ eδN

�

1

δN
− π

2 sinπH
I−H

�

δN
2

�

IH−1

�

δN
2

���

= βHδN +O(δ2N),

where we have used the relations
π

sin πH
= Γ(H)Γ(1−H),

I−H

�

δN
2

�

IH−1

�

δN
2

�

=
1

Γ(H)Γ(1−H)





�

δN
4

�−1

+
δN

4H(1−H)



+O(δ3N).
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Simlilarly, we have

E(U2
i (1)) =

d2m(θ, 0)

d θ2

∣

∣

∣

∣

∣

θ=0

= −1

2
A+

1

4
eδNB − 1

2
eδNC +

3

4
e2δNB2,

where

A = E(Ui(1)) = βNδN +O(δ2N),

B =
1

δN
+ e−δN − π

2 sin πH
I−H

(

δN
2

)

IH−1

(

δN
2

)

,

C =
1

δ2N
(1 + cosh δN)−

1

δN

π

2 sin πH
I−H

(

δN
2

)

IH−1

(

δN
2

)

,

which yields the expression for E(U2
i (1)) in (21). To prove (22), we consider

m(0, θ) = e−δN/2

[(

1 +
δ2N
µ2

)

cosh2 µ

2
− δN

µ
sinh µ

+
π

4 sinπH

{

−δ2N
µ
I−H

(

µ

2

)

IH−1

(

µ

2

)

+µI−H+1

(

µ

2

)

IH

(

µ

2

)}]−1/2

,

where µ =
√

δ2N − 2θ. Then we obtain, for δN > 0,

E(Vi(1)) =
dm(0, θ)

d θ

∣

∣

∣

∣

∣

θ=0

= −1

2
eδN

[ 1

δ2N
+

(

1

δN
+

1

δ2N

)

e−δN +
π

4 sin πH

{

− 1

δN
(I−HIH−1 + I−H+1IH)

+
1

4

(

(I−H−1 + I−H+1)IH−1 + (IH−2 + IH)I−H

−(I−H + I−H+2)IH − (IH−1 + IH+1)I−H+1

)}]

,

where Iν = Iν(δN/2) and we have used the relations.

d Iν(z)

d z
=

1

2

(

Iν−1(z) + Iν+1(z)
)

,
d µ

d θ

∣

∣

∣

θ=0
= − 1

δN
.

Noting further that

I−HIH−1 =
1

Γ(H)Γ(1−H)

( 4

δN
+

δN
4H(1−H)

)

+O(δ3N),

I−H+1IH =
1

Γ(H)Γ(1−H)

δN
4H(1−H)

+O(δ3N),

I−H−1IH−1 = − 4H

Γ(H)Γ(1−H)

1

δ2N
+O(δ2N),

IH−2I−H =
1

Γ(H)Γ(1−H)

4(H − 1)

δ2N
+O(δ2N),

I−H+2IH = O(δ2N), IH+1I−H+1 = O(δ2N),
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we can prove (22) when δN > 0. The case of δ < 0 can be proved similarly, which
establishes Theorem 4.

Proof of Theorem 5: The relation in (25) can be proved because of the LLN in (23) and
the CLT in (24). It follows that
√
NT

√

βH α̃(N, T ) ⇒ N(
√

βHδ, 1),

which yileds (26). Thus Theorem 5 is established.
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