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Cross-Sectional Effects of Common and Heterogeneous Regressors on

Asymptotic Properties of Panel Autoregressive Unit Root Tests
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The present paper deals with nonstationary panel autoregressive (AR) models, and examines cross-
sectional effects of regressors on the asymptotic properties of panel unit root tests for the AR (1)
coefficient. We consider various types of common and heterogeneous regressors and compute limiting
local powers of tests as 7' —° for each N, where T and N are the time and cross section dimensions,
respectively. Dealing with tests based on the ordinary least squares estimator (OLSE) and the
generalized LSE (GLSE), we examine how common and heterogeneous regressors affect the tests as N
becomes large. It is shown that the existence of common regressors does not affect the tests
asymptotically as N —co . This means that the power of the tests remains the same even if the model
contains common regressors. We further derive the limiting power envelopes of the most powerful
invariant (MPI) tests, which yields the conclusion that the GLSE-based tests are asymptotically

efficient, unlike the time series case.
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1. INTRODUCTION

Nonstationary panel AR models were extensively discussed in Moon and Perron (2008) and Moon,
Perron, and Phillips (2007), where the former deals with the case of heterogeneous intercepts, whereas
the latter discusses the case of heterogeneous trends. In these papers, the limiting local powers of various
panel AR unit root tests are computed as 7 and N jointly tend to ©© under the local alternative that

shrinks to the null at the rate of 1/ (TN*), where T is the time series dimension and N is the cross section
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dimension with 0 < x < 1.

Unlike the above works, the present paper examines the effect of the cross section dimension N on
the unit root tests as 7' —o0 . This may be useful when 7T is bigger than N and it is desirable to see the
intermediate situation rather than the final situation as both 7"and N go to ©© . We consider four types of
regressors: (1) a common intercept and trend, (2) heterogeneous intercepts and a common trend, (3) a
common intercept and heterogeneous trends, (4) heterogeneous intercepts and trends. For these models
we conduct panel unit root tests based on the OLSE and GLSE of the AR coefficient, and some other
tests based on these residuals. To see the cross-sectional effect, we compute limiting local powers of
these unit root tests as 7' — o for each intermediate N under the AR coefficient close to unity in the
order of 1/T. Tt is theoretically and graphically shown that, as N becomes large, the existence of common
regressors does not affect the asymptotic properties of these tests, although that of heterogeneous
regressors does affect. This fact was also partly observed in panel AR models discussed in Breitung
(2000) and Moon et al. (2007). We give more detailed analysis of this fact for each intermediate value
of N. We also derive the limiting powers of these tests and envelopes of the most powerful invariant
(MPI) tests as N —co | utilizing the joint moment generating functions (m.g.f.s) associated with the
test statistics obtained in Nabeya and Tanaka (1990), Tanaka (1996, Chap. 7), and Tanaka (2017, Chap.
10).

The outline of the paper is as follows. In Section 2 we present panel AR models to be dealt with in
this paper. In Section 3 we compute limiting local powers of various unit root tests. In Section 3.1 we
deal with OLSE-based tests, followed by GLSE-based tests in Section 3.2. The limiting power envelopes
are derived in Section 3.3, and it is found that the GLSE-based tests are asymptotically efficient, unlike
the time series case. The effect of temporal or cross-sectional dependence of the error term on the tests is
discussed in Section 3.4. Section 4 concludes the paper. Proofs of theorems are provided in the

Appendix.

2. PANEL AR MODELS

The panel AR models to be discussed in this paper are the following types:

Model A: y,=a+pt+n,, (1)
Model B: y,=o,+pt +1,, (2)
Model C: y,=a+p;t+n,, (3)
Model D: y,=a;+p:t+1,, (4)

where i refers to cross section, whereas # refers to time series. The process i/ is defined for all models
by

36



7340V Cla B EARMOE OB TR 125 2 23RO 7 a2y v a YR (H)

”it:pini,t—l+8it7(izls-”vN;t:l,”-vT)a (5)

where it is assumed that {,} starts from #7,, =0 for each i, and is driven by let . We initially assume le.t
~iid. (0, ) for simplicity of presentation. The case of temporal or cross-sectional dependence will
be discussed in Section 3.4.

Model A is the most restricted model with common intercept and trend. Model B has heterogeneous
intercepts, whereas Model C has heterogeneous trends. Model D is the most unrestricted model with
heterogeneous intercepts and trends. Note that these four models coincide with each other when N = 1.

For the above models we consider the panel AR unit root test
H,:p;=1versus H, : p; <1 for some i, (6)
where we assume that, under H,, p; takes the following form:

pizl—%N, CN:%, (7)
with ¢ > 0 and 0 < x < 1. This is a simple extension of the time series unit root test. A more general
alternative allows the true value of p, to be different among cross sections. Moon and Perron (2008) and
Moon, Perron, and Phillips (2007) assume such an alternative, but we maintain (7) to simplify
subsequent discussions.

Under the above setting we shall explore asymptotic properties of various unit root tests. For this

purpose we define the Ornstein-Uhlenbeck (O-U) process by
dY,(r) = —cy Y,(r)dr+dW,(r), ¥,(0) =0, (i=1,...,N) , (8)

where » € [0, 1] and {W,(r)} is the standard Brownian motion independent of {W,(r)} (i#k) so that
Y, (r),..., Yy() arei.id. forany r € [0, 1].

3. LIMITING POWERS AND POWER ENVELOPES

We first compute the limiting local powers of various unit root tests for Models A through D. In Section
3.1 we deal with OLSE-based tests, followed by GLSE-based tests in Section 3.2. The limiting power
envelopes of the MPI tests are derived in Section 3.3. The effect of temporal or cross-sectional

dependence of the error term is discussed in Section 3.4.

3.1. OLSE-Based Tests
The present test was earlier considered in Moon et al. (2007), and Moon and Perron (2008). The
limiting local power was also computed in these works as both I"and N go to ©© under a more general

setting. Here we examine the cross-sectional effect of regressors as 7' — o for each V.
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Let 77,, M be the OLS residual obtained from Model M (M=A, B, C, D). Then we compute the

estimator ﬁW) of p;=p under H, by
AM) — AED SN ﬁfltmlﬁfr[m -1 1 E <M)
P N T (M) T Z (9)
i=1 Zt=2 {r];t ]} i=1
where
0 _ L a0 (500 )
lJzT :mhzzm,rfl(nit —'Lt 1)
= 1 (M) (M) a M) ~(M)
" 2702 [{W’T } {77’1 } ;('Izt iy - 1) , (10)
T
= () .
! T2452 o it

The following theorem describes the asymptotic distribution of ,b(M) as T'— oo for each N, the proof
of which is given in the Appendix.

Theorem 1. As T'—co with N fixed under p,=1—c, /T, the asymptotic distribution of ﬁ(M) in Model M
(M=A, B, C, D) follows

N (M) (D) N (M)

(p00—1) = izt Ur . o U+ Y U

v 1 ) N (D) N 00
Zz 1 Vir no+ Yin

1

where

Yi(r) = (4= 6r) /01 Yi(s)ds — (127 —6) /OISY,-(S)ds>dY,-(r),
V) = (=60) [ vi(s)ds = (12=6) [ 57, (5)as)’ar.

(r - |

Vl-@:/ol <Yi<}"> —3r/0] sY; (s)ds>2 dr,
(
(
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Some remarks follow.

(a) When N=1, that is, in the time series case, the distribution of Qﬁﬂm in (12) reduces to Q;D) =
U fD)/ V,(D) for all M. Note also that U EA)/ VfA> corresponds to the popular near-unit root distribution

associated with the time series model x,=px,_, +¢ withp=1—¢/T.
(b) As N becomes large, it holds that

o U+ 3N, oM sh g™y o0,(1) X, g™
N - - -~ E)
P s, vy, vy o0, X, v

where the distribution of this last quantity is obtained from Model M without common regressors,

which means that the effect of common regressors fades away as N becomes large.

(c) We can deal with some other variations of the above models, for which we can also consider the

statistics T(pﬁ('> —1). For example, we can show that, as 7 —° with N fixed under p;=1— ¢,/ T,

¥

Model Al: Ya=mi, T(pUV—1)= SN A

i=1 i
(]]<B> + vazz []i(A)
I/](B>+ EZ\LZ V'(A))

1
M+ i B
N U(B>
Model B1: Yi= o+ i, T</A)(Bl)_1>jﬁ,

i=1 i

Model A2: yi=o+ny, T(HpHY—-1)=

Model A3: yit:ﬁt“l‘ Nit T</3<A3)_1>:>

Model C1: yi=Bit+m, T(pI-1)= W

Thus we also conclude that, for these models, the existence of common regressors does not affect the

asymptotic behavior of the OLSE-based tests as N —>c0 , which was also described in (b).

@ Uu fc) and V,@ behave differently from the other quantities, which may be because U ‘(o/ V,@ results
from the restricted regression without intercept y;, = fi + ;. It can also be shown that U EM) and Vf‘m
are uncorrelated under p =1 for M =B, D, but are correlated for M = A, C. In fact, it holds that Cov
(U, V') =1/3 and Cov(U'®, ¥'“) =1/175 when ¢y=0. These can be computed easily from

i

the joint moment generating function (m.g.f.) described below.

To compute the distribution of QﬁM "in (12) for each N, we use the joint m.g.f.m(M> (x,y) of U ?M)
and V™ defined by
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m (5 y) =E[exp x UM + y 7,00} = oo 02 [H00 (5 )], (13)

where, by putting = \/ck — 2y , we have [Tanaka (2017, Chap. 10)]

sinh u
T
2. 2.3 . 2
x“+cyx —cy +2y sinh C
v oy TEVIE LN coshu
H U u

22+ qx—2
" (x CN)Z CN,V> (COSh,u _ 1) ’
u
_x(eg +3ch+ 3) — ¢} sinh u N ci]\; cosh 1
u u
B 3x (e +3cy +34> —6pley +1) (sinh,u —Cosh,u>,
u
e~ chx —ax2( +3cy +27) —8y(ck —3cy —3) sinh u
ut u

24(0}4vx +8x%y +4(cy +1) (3x2 —y2>) (sinh,u coshu 1 )

- - 2

H“ (x,y)=coshu + (cy —x)

H®) (x,y) =~

H'(x,y) =

HP)(x, )=

O “ wou
¢ S(C?V(ch =2y ) +4x%(c% +3cy +6))
+| -5+ cosh 1

ut ut
4(6‘,‘\,)6 +4x2 (e} +3cy —3) = 2% y(ey + 3))
O '

+

Then the distribution of Qf,M) can be computed by using Imhof’s formula [Imhof (1961) ]

P(Q%Wg z>=P (Z(V](D)+ i V,.(M)>— UP) — i U[(M)) 20)
=2 i=2
:%+;/Om élm[m@x—ie, i0z) {m ™ (~io), iﬂz)}N_l ] do.

(14)

Numerical computation like Simpson’s formula can be used to compute (14) by taking care of the
computation of square roots of complex-valued quantities [ Tanaka (1996) .

Figure 1 draws the probability densities of Q,f,B> and Q‘ém for various values of N under H, (cy=0)
to examine the cross-sectional effect of N. As Theorem 2 below indicates, these distributions converge to
—3 and — 15/2, respectively, as N becomes large. Note that Q,(B> = fm. The distributions Q,SB ) for N >1
are shifted from Q\”’, whereas Q" for N > 1 are just the convolution since P(Q,”' < z) =P(Z"_, (zV”
-U fm) >0), as is seen from (14). The general feature of Q,SA ) and Qém are the same as Qf ), although

those densities are not presented here.

We next compute limiting powers of the tests based on QﬁM " as N = co under p=1—cywith cy=
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¢/N". We need to find the limiting distribution of normalized Q,SM) by suitably choosing x. For this
purpose, let us put

E(UI-(M>) =ap+ acy + azc]zv +O(c]3\,), E(VI-W)) =by+ by + bzc,z\, +O(cf\,).

The joint m.g.f. m W0 (x, y) of U ,(M) and Vf‘m shown above can be used to compute these moments using
the Taylor expansion, as is shown in the Appendix. We have, by the week law of large numbers (WLLN)
and the central limit theorem (CLT),

(M) Qo ﬁzﬁﬂ( l<M>_ZTDVf(M)> 2
m( N _F): | ) +0p(1)= Nlgo 07),
0 v 2i=1 Vi
Model B
N
-
©
o
<
o
Q
o
©
o
©
o
<
o
N
o
Q
o

-15 -10 -5 0

FIGURE 1 Densities of Q%" under H, are drawn at the top, whereas those of QY at the
bottom. Densities are computed for N =1, 5, 10, 50, 100 for both graphs.
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where

o= lim /N [Gbo=dbr - asbo —aobs o)
N —»co bO bO

= lim Valr(UW> ZO V,-<M>).

N —© 0

Then it is recognized that, for the asymptotic distribution of normalized Q(M to be nondegenerate, ¢y =

0(1/YN) when a,b,— a,b, 0, and cy=0(1/N"*) when a,b,— a,b, =0 and a,b, — a,b, % 0. It is shown
in the Appendix that cy=0(1/y/N) for QN and QN , whereas cy=0(1/N"*) for Q@ and Qf,D >, and

we have the the following theorem.

Theorem 2. The limiting powers of the tests based on Q,éM) (M=A,B,C,D) underp=1— ¢/ (N“T) at

the 100y% level are given as follows:

N
P (’IZQ;G” < Zy> —- O (zy +0. 707c)

5N
P( 51 )43 <zy>—>c1> (2, +0.470¢),

N
P( Ti0(@¥'+4) <ZV>_’(I) ,+0.0721¢2),

112N NE ;
P (,/ 2805 ( +5 > < zy> 2, +0.0527¢%),

where @ (-) is the distribution function of N (0, 1), and z, is the 100y% point of N (0, 1), whereas k=
1/2 for Models A and B, and x = 1/4 for Models C and D.

It follows that the OLSE-based unit root tests in Models A and B have nontrivial powers in a
NVT! neighborhood of unity, whereas the powers for Models C and D are nontrivial in a N~ "*T "
neighborhood of unity. It is also seen that the limiting power decreases as the model complexity
increases.

Figure 2 shows powers of the Q<B> and Qif,D ) tests against ¢ = cyN“€ [0, 20] at the 5% level for N
=1, 10, 100, o , where the powers for N < o are obtained from (14) by putting z at the 5% point of
the null distribution of Q‘SM), whereas those for N= c© are obtained from Theorem 2. It seems that the
powers for N=100 are still not well approximated by the limiting powers. This is particularly true of
Model D. The powers of the Qf,B) -test are higher than those of the QiD ) -test, which is also evident from

Theorem 2. This means that the existence of heterogeneous trends decreases the power.

In the next subsection we consider the GLSE-based tests, which will be shown to be better than the
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FIGURE 2 Powers of the Q,‘f)-test are shown at the top, whereas those of the Oﬁ,D)-test are
at the bottom. Powers are computed for N =1, 10, 100, <o for both graphs.

OLSE-based tests.
3.2. GLSE-Based Tests

Let us express Model M (M=A, B, C, D) as y=X<M)y(M) + 1, where XM and y<M> are the regression

matrix and parameter vector in Model M, respectively, whereas
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Then we define the GLS residual by I;W) =y — X 40 7 (M>, where
7= (X)) 1y ® € ) T X ) @ €C) Ty (15)

Here ® is the Kronecker product and C is the 7 X T lower triangular matrix with (s, ¢)-th element
being 1 for s > ¢ and 0 otherwise. The GLSE p M of p can be computed following (9) with ;](m replaced
by ;](M).

The following theorem describes the asymptotic distribution of p M a5 T'— oo for each N, the proof

of which is given in the Appendix.
Theorem 3. As T —o0 with N fixed under p=1— ¢,/T, the asymptotic distribution of p~<M> for Model
M (M = A, B, C, D) follows

WI(D>+Z;\;2 W;<M)
X1<D>+Z§v=2 Xi<M>

T(p(M>_1>:>R%W>: (16)

where

.l r1
wi=w = [ vane), x=x= [ v ar,
JO JO

1 1
, X,-<C)=X,.(D)=/ (v = (D) dr.
0

It is noticed that the distributional structure of the GLSE-based statistics R iM ) remains the same as
that of the OLSE-based statistics Q‘é‘m‘ It is also seen that ij,/” coincides with R ﬁB). The same is true of
R\ and R\"”, and these properties are also shared in the time series case [Tanaka (1996) . The densities
of RY" (= R\”) under H, are drawn at the top of Figure 3 for N=1, 10, 30, whereas those of R\" (=
Rﬁm) at the bottom for N=1, 10, 50. The former densities are seen to be shifted from the latter as N
becomes large. Both RﬁA) and RﬁB ) converge to 0, whereas both RAE,Q and Rif,D ) converge to —3, as is

described in Theorem 4 below.

We next consider limiting powers of the tests based on Rﬁfm as N — <o | which is described in the

following theorem, the proof of which is given in the Appendix.

Theorem 4. The limiting powers of the tests based on RM (M= A,B,C,D) as N —co under p=1-—
¢/ (N"T) at the 100y% level are given as follows:

P(,/]ZRR,Mkzy)—»cp(zy+0.707c), (M=A, B),
P SN R W) 2 _
s (RV'+3)<z ) =@ (z,+0.07452), (M=C,D),
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where k= 1/2 for Models A and B, and « = 1/4 for Models C and D.

It follows from Theorem 4 that Ri,M) converges to O for M = A, B, whereas it converges to — 3 for
M=C, D, as was mentioned before. It is also noticed from Theorems 4 and 2 that the GLSE-based tests
are better than the OLSE-based tests in Models B, C, D, although those are the same in Model A. The
top of Figure 4 shows powers of Rﬁf’ ) ( =R§,B))-tests at the 5% level for N=1, 10, 50, ©© , whereas the
bottom of Figure 4 those of the R,i}c ) (= RivD >) -tests. It is seen that, for Models A and B, the powers for
N=150 are reasonably well approximated by the limiting powers, whereas, for Models C and D, the
aprroximation is still not good enough for N=50. It is seen that the former powers are higher than the
latter, as is anticipated from Theorem 4. This means that the existence of heterogeneous trends decreases
the power, as in the OLSE-based tests.

Models A and B

- N = 30
g | N = 1 N = 10
AN S~
8 T T T | T - T
-8 -6 -4 -2 0 2
Models C and D
o N =50
-

T T T T T T
-10 -8 -6 -4 -2 0
FIGURE 3 Densities of RS (= R) under H, are drawn at the top, whereas those of R

(= RY)) at the bottom. Densities at the top are computed for N =1, 10, 30,
and those at the bottom for N =1, 10, 50.
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Models A and B
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0.8

0.4

I I I I I
0 5 10 15 20

FIGURE 4 Power§ of the R’ (= RY)) -test are shown at the top, whereas those of the R’
= F?N -test at the bottom. Powers are computed for N =1, 10, 50, o for both
graphs

3.3. Limiting Power Envelopes

In previous subsections, dealing with Models A through D, we considered panel unit root tests based on
OLSE and GLSE, for which the limiting local powers were computed and power comparisons were
made among those tests, examining the cross-sectional effects. In this subsection we derive the power
envelopes, from which the performance of these tests can be evaluated. The idea was earlier developed in
the time series context by Elliott et al. (1996), and was extended to the nonstationary panel data by
Moon et al. (2007). Here we derive the power envelopes for Models A through D, paying attention to
the cross-sectional effects.

Let us consider the testing problem
Oy
Hy:p;=1 versus Hl:p,:l—T:p(@), (17)

where 0y =6/N" with 0 being a known positive constant. We assume that the true value of p under H, is
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given by p(c) =1—c,/T with cy=c/N". Assuming l¢;,} ~ NID (0, 6°), the Neyman-Pearson lemma tells

us that the test which rejects /1, for small values of

£ 5L (300 - st ) - (70 - 7 )]
= 53300 - 7204 0)

i=1 t=1

S () =

(18)

is MPI, where 7~7i<,M) (0) and 7 ,-(,M) (1) are the GLS residuals obtained from Model M under H, and H,,
respectively. The residual 7 ,SM> (0) is the same as the GLS residual dealt with in the last subsection, that
is, ﬁW) (0) = ﬁW), whereas ’;(m (1) =y - X(M>))(M> (1), where

y (1) = <(X(M)>/Q—1 (O)X <M)>7l (X<M)>'Q—1(9)y’

with Q (0) =1, ® C(p(0))C'(p(0)). Here C(p(0)) is the T x T lower triangular matrix with (s, 7)
-th element being p‘r"w) for s > t and 0 otherwise. The test based on S (i‘f () with fixed @ is called the
point optimal invariant (POI) test [King (1987)].

The following theorem gives the weak convergence of S %) (0) as T —o for each N, the proof of

which is given in the Appendix.
Theorem 5. As T —co under p =1 — ¢,/ T for each N, the MPI test statistic S %) (6) in (18) follows
1 N
S0 =50 = [20+32070]. t1=aB.cD), (19)
i=2

where

240 =22 0) =4 [ " Y20) dr 420y / Y (v,
20 = 27 (0) = [/0‘ oar =22y [

Oy +1

2 0% ! ( :
30y Y,.(l)—éN (/0 rY; r)a’r)}—HN,
with dy=1+6,+ 505 .

It is seen that the expression for Sy (6) in (19) is of a similar nature to @\ in (12) and R\ in
(16). It is also noticed that the distribution of S ;M) () depends on 0 that is the value under H,. Thus the
MPI test based on S\ (A) is not uniformly best, but we can modify S;"’ (6) so that the distribution of
the modified statistic does not depend on 6 as N —co . Then we can compute the limiting power of the
test based on a modified statistic which yields the limiting power envelope of all the invariant tests for

Model M. The following theorem gives such statistics and the power envelopes.
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Theorem 6. The limiting powers of the tests based on the MPI statistics S\ () in (19) at the 100y%
level as N =0 under 8y =6/N" and ¢y = c¢/N" are given by

(M)
P <\/§ (SN9N<9> = % 6N> < z,) —® (Zy + 0.707c) , (M=A,B), (20)

SO oy 11
P(3«/5N <N92N—6+450}v <z, )= ®(z,+0.0745¢), (M=C, D), (21)
N

where k= 1/2 for Models A and B, and « = 1/4 for Models C and D.

The limiting powers of the modified tests give the power envelope of all the invariant tests.
Comparing Theorem 6 with Theorem 4 it is seen that the power functions of the GLSE-based tests
coincide with the power envelopes. Thus the GLSE-based tests are asymptotically efficient, unlike the
time series case. This is a merit of panel tests as N = |

There are some other tests that are asymptotically efficient. Here we take up two such tests. Define

N 2
KW=3 (i) /

i=1

> (#0) - 722 0)) (22)

N
=1 t=1

i

T

2 N 2
{0} / >3 ()= i (o) - (23)

i=1 t=1

(M)
Lyy =

N =
M=
M~

I
~
I

1

The test that rejects H, for K i small is locally best invariant (LBI), although the test is inapplicable to
Models C and D because K %) = 0 for M = C, D, whereas the test that rejects H, for L%) small is LBI
and unbiased (LBIU) for M= C,D [Tanaka (2017, Chap. 10) ]. We have, as T —© for each N,

1 N
v (). (M=A,B).
Kyp =k =4% =

0, M=C,D),

1LY
— Y2, d =
N;/O 2(r)dr, (M=A,B),

(M) (M) —
Lyr =Ly =

1 2
ﬁzl/o (Yi(r) = r¥i(1)) dr, (M=C. D).
Since it can be shown that, for M= A, B,
EEKM)=1-cy+0(&), Var(K ") = L (2=4ey +0(3)
W) =1-cy+0(), Var(k ! —ﬁ(z 4ey +0(})),
we have VN (K,SM - 1) >N(-¢,2) by putting cy=c/ VN , which implies that the Ki,M _tests for M=A,

B are asymptotically efficient. It is evident that the L -tests are asymptotically efficient for M =C, D.
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Note that the LBI and LBIU tests in the time series case (N=1) are asymptotically inefficient [Tanaka
(1996, Chap. 9)]. We also note in passing that, if the GLS residual in (23) is replaced by the OLS
residual, the resulting statistic is essentially the Durbin-Watson statistic and the corresponding test is

asymptotically inefficient.

3.4. Effect of Temporal or Cross-Sectional Dependence

Here we consider the situation where there exists temporal or cross-sectional dependence of the error
term le;/ in (5) and examine the effect of such dependence on the test statistics obtained in previous
subsections.

Let us first consider temporal dependence. For this purpose we assume

e =3 0uCik=0: L), Y kloxl<oo, {GI~ iid(0, %), (24)
k=0 k=1

where ¢,(L) =1+ ¢, L+ ¢ ,L,+--- with L being the lag-operator. The distributional properties of the
statistics T'( ,5(M> —1) in (12) and T( ,5<M) —1) in (16) are affected by this relaxation. In fact, it can be
shown that, as 7 —o© for each N,

AU + 3= 20]+ 0,01
T(pM —1)=" N ’
> ot (VM +0,(1)

i=1

-

[\/]2

o) [+ 3= 20]+ 0,1

, (M=A, B),
() XM +0,01)

Mz

i=1
T(pM —1)=

N e}
NS kw4 0,01)

k=0

92(1) XM +0,(1)

(M=C, D),

i=

where U EM> and me are defined in (12), and Wf‘m and X f‘m are defined in (16), whereas 4, is the ratio
of the short-run to long-run variances of lg;} given by 4,= X"y ¢z / ¢ (1). The above statistics depend
on the short-run and long-run variances of the error term that characterize temporal dependence.

We next consider cross-sectional dependence, for which we assume that

€1y

go=| ¢ |INX1~iid(0, %), T=[oa]iNxN,
ENt

It then follows that
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N N

> 0 UM+ 0,(1) YoM +0,(1)
T(pM —1)= 5 . T —1)= = .

> o 7+ 0,(1) > o X +0,(1)

i=1 i=1

Here UM M ™ and XM replace U™, V™ W™ and X respectively, with ¥,(r) replaced by
Y.(r), where

dY,(r) = —e\Y,(r) dr + aw,(r),

and | W.(+)! is the standard Brownian motion with
Cov (W,(r), Wi(s)) = 22—
Oii Ok

min (7 ).

The test statistics depend on the covariances o, of the error term that characterize cross-sectional
dependence.

It is recognized from the above observations that, to use the asymptotic results obtained in previous
subsections, we need to modify the statistics to make them independent of nuisance parameters. This

remains to be done.

4. CONCLUDING REMARKS

Under a simple setting, we have presented a unified approach to deriving the limiting local powers of
panel AR unit root tests, paying attention to the cross-sectional effect of N. For this purpose it is
necessary to compute moments up to the second order of the limiting statistic in the time series direction.
We found it easier to use its m.g.f., unlike in the literature. It happened that the tests that were not
powerful in the time series case become more powerful in the panel case. It was also found that the
existence of a common intercept and/or a common trend does not affect the asymptotic behavior of the
tests. This holds for not only the tests based on OLS and GLS residuals, but also power envelopes.

The present approach can be applied to unit root tests for other types of panel models such as panel
moving average models or panel error components models. Some simple extensions are found in Tanaka
(2017, Chap. 10). For these models the panel LBI or LBIU tests can be used and the corresponding
statistics have a distributional structure similar to the panel AR unit root tests discussed in this paper.
Details are reported in Tanaka (2018).

5. APPENDIX: PROOFS OF THEOREMS

Proof of Thereom 1: We first deal with Model D. Given the OLSEs &, and f3; of ¢, and 3, respectively,
the OLS residual is
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?/itZJ/it*&i*,gif
(S 2=ty s) Sy mie+ (T =0 s) S s

=Mt — B
TZSTI S2 (Zs 1 S)
N A 12t 6\ _
= ’7it—<*—7> Z Mis — (F—ﬁ> Z s + Oy (T h.
s=1 s=1

T T?

The continuous mapping theorem (CMT) yields, as 7 —c0 with N fixed,

1 & o 1 [, . roo ,
Ur = To? ,Zz: it -l (ﬁi’ = Mt _'): 27’0‘2[’7%_ ”/1‘21 - ;(771'1 - 17;',:—1) }
1 2 4 T 6 T 2
T 2Ta2 <’71T Z”” TzZ”?zt) _<T§ mt_ﬁ; t71,-,>
d 2
_Z<77n - ﬂi,t—l) +0,(1)
=2

:>UI;KY(1 +2/ Y:(r) dr—6/ Y, (r) dr>2
—<4/0 Y(r)dr—6/0 rY,-(r)dr)z—l}

Y.() — (4—6r)/01 Y.(s) ds
- (12r—6) /01 sY,-(s)ds) ay,(r),

Il
o\__
VS

T

=2
2

o 4 60— 2(1— 6 ) «
Z(”UI (T_ <t 1>>Z7’/1s_<]<]€3]>_7,2>§577is>

2,2
Tat2

== [ (v -G-en [ Y,(s)ds—(12r—6)/olei(S>dS>2dr.

Thus the relation (12) is proved for Model D by the CMT.
We next deal with Model B, for which the OLSEs & and /)3 of @ and S are given by

(5)-

where I is the identity matrix of order N, ® is the Kronecker product, and

Iy ®i,

(0 Yoot v oan] (1 28
i, @), )\ St v = i, @d, )Y

0 1 1 i yi
a= : L dr= : , dr= : , Y= , Yi= : ,
&N 1 T YN Yir
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‘We then have

t=1 i=1 t=1
6 XNJZ 2t
g 1=y 40,712,
p=F NTZEH< T)”’ o)
it = Yie — & '_ﬁt:ﬂit_<Ai_a>_<ﬁ_ﬁ>t

3 N T
=Mt — Z’?n N7< _7>Z Mis

1

i=1 s=

+L<17g>§:i +0,(VT)
NT2 T P S His 92 T),

where #,= (.., . . ., nv) " It follows that T (p P —1) = =Y U,;B> /2N ‘T , where it holds that, as T’

— o0 with N fixed,

- Ufﬁ 2To-22 |:’7i2T’A7i2122<?/it;7i,t1>2:|
N N . 2
i;Z[Y(D—/ ,-(r)dr+iZ/l(l—2s> Yk<s>ds]
S| [ neag 3 [a-20 ne Yy
2: r)dr s) Yi(s) ds 5
:g/ol (r( /Y<s>ds) dy,(r)
PN IR TINTS o) KEABEERARIN
:gzl]i(g)’
Sy - R %inz
a7 e
N 1 N 1 2
Q;:/O [K(r)_/o Y;(s)ds+ (2r—1) 3 ,;/0 ( 2sYk(s)> S} dr
— . V(B>
Let us put ¥(r) = (Y,(r), ..., Yy(r)) " Following Nabeya (2000), consider Z(r) = HY(r), where H is

the NX N orthogonal matrix with the first row being i’/ vN so that {Z(r)} = {Y (")} and ¥'(r)iy=
Y'(r) H'Hiy, =/N Z,(r). Then it holds that

ZU,“” /( 0= [ Y)Y ()
5 /0 Qy'(r)-Y'(1))H'Hiy dr/ol(Y’(s)—2sY’(s))H’HiNds
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Nl I
=3 [ (2= [ 2 was) az )
02, ()-2, (D) dr [ (2,9 -252,(s))
3/02er Z, (1 dr/021s 257 (s))ds
N 1 1 1
=3 [ (z0- [ z0ds)dzio) + [ 2 0azi0) +22,0) [ 20w

—6</(;121(r)dr>2—6zl(1)/01 rZ(r)dr+12 /OIZ1<r)dr'/0.lle(s>ds,

N
U1<D) + Z l]i(B) ,

o

N

i=2
iV,‘B): ;/01 (zi () —/Olz,- (s))zdr —3(/0121(r>dr>
—12(/01rzl<r)dr>2+12 /Olzl(r)dr/olle(s>ds

N
V1<D> + Z Vt<B) ,

i=2

2

o

which shows that (12) holds for M =B by the CMT. We can prove (12) for M= A and C similarly.

Proof of Theorem 2: Let us consider Model B. The joint m.g.f of U and V" is given in the text,
which can be used to compute first and second moments of these quantities as ¢y — 0 by employing
computerized algebra and the Taylor expansion. Here we show how to compute E (U fB>) and Var (U Em) .
It follows from (13) that

B
m(x) =E (exU,-< >): elex /2 ()} 12,

2, 2 3 2, 2

x*+cyx—c 2(x%+c%x)

*7]\/2 N(11+(12+74 N ((,12*1),
Cn N

gx) =

with g(0) =e™, a, = (sinhcy) /¢y and @, = coshc,. Then we have

.
m,<0>:E<U;<B>>=—§—5€ vg'(0),

m(0) =B ((U*)?) = + 507 ((0) - £'(0) + 3¢ 101

Here it holds that

2 2 4
g’(0)=fa1+07(a271) g’/(0)=767a1+67(a271).

N N N
Then, using the expansions for e, e a, and a,as cy— 0,
2 3 4

c c
—on _ N _ N, N 5
e N=1—-ey+—=——+2=4+0(cy),
2 6 T tol)
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4c3, 2%,

e =1 =20y + 26— 25 250 (),

2 4 6
Cy , Cy N 8

=14+ >+ =4+ +0 B

ay =1 6 120 T 5040 (en)
2

N T A 8

RS TRE T R C R

we can obtain moments of U ,@ . We now have

11 11
E(U,-<B>)=—§+ﬂc]2\,+0(c]3\,), Var(U?) = — — — ey +0(%),

1
E(V;<B>> :*_ECN"’O(CN) Var(V<B))

1
~30 cy+0 (c%,) .
It follows from the WLLN that Qﬁm — —3 in probability. Thus we consider

1 N (B) (B) 1N (8) (®)
R s e

The m.g.f. of U'” +3V* can be obtained from m" (x, y) by putting y = 3x, which yields

17 23

50" 60 v +0(cy).

1
EU® +3r8)) = —ZcN+0<c§V>, Var (U, +3V;) =

Putting cy=c¢/ VN, we now have

N< c 17>
(8) 4 60) _ (3 ﬂ)
N(oV +3)= e 7N< 565 )

which proves the second relation in the theorem. We note in passing that
1
Var (U; +3V;) = Var (U; ) + 9Var (V; ) — —cN +0(c)),

! —c&+0(cy),

Cov(Us V1) =~ 155

so that it holds that

/Ol ( / W, (s) ds> dw,;(t) and / (W,- (1) - /01 W, (s)ds>2 dt

are uncorrelated.
For the other models the first two moments of U fm and V,W) as ¢y — 0 can be obtained from their

joint m.g.f.s given in Tanaka (2017, Chap. 10). More specifically we have

1
E(U"Y) = —5ev+0(ck), Var(U") =5 - e +0(c),

N[ =
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11 1 8
B =5 —3ev+0(c), Var(V!) =3 - cen+0(c).
2
E<Ui(c>>:_g 105CN+O<CN> Var(U<C))—50 525cN+0<CN>
11 1 4
EV(C) 0 V. V<C> - T 0 4 )
V) =T0 " qrp v +O @), Vartli) = g5 = s v + 0 ()

1 11 26
E(U,.<C>+4V,.<C>)=—£c§+0(c;‘,), Var(U'C) + 47,y = 20" 045 A +0(ch),
E(U®)) = 1+ +0(3), Var<U<D>>_ _ L +0(ch),

i 1440 Y v 60 504 N
11 11 1
E(V'?) = +0 Var (V) = ——— —— 2 +0
V)= 15 4200N <CN> ar(V;7) = 6300 4200 9 <CN>
o) 15 oy _ 1 o) 15 o)y 193 31 ,
E(UP + SV )= SevTo(d), Var (U +5 v )= 680" 2016 VO ().

These moments yield the limiting powers for M= A, C, D shown in the theorem, which establishes

Theorem 2. We note in passing that, when ¢y =0,

COV( l]i(c>’ 4Vi(c) ) _

COV(U( ) 15V<D>>

so that U'” and V'

S (Var(U© + 47 = Var(U©) - Var(47,)))
-4

175"

= S (Var @+ ) = Var(U) - 22 Var (7))
0

D D
are correlated, whereas U ( ) and Vf ) are uncorrelated.

Proof of Theorem 3: We first deal with Model D. Defining the T X T lower triangular matrix C with
C(s, 1) =1fors >tand C(s, 1) =0 for s < ¢, the GLSEs of @; and f; are given by

(7

(4 e ) (e

:<a,->+<1 1)"<nn>z<ai>+ ! (T,
Bi 1 T nir pi T =1 \—na+ nr
so that we have
i =ya—di— Bit=nu—(6;—o;)—(Bi—Pi)t
t
:nit_?i’liT""op(ﬁ)'

Consider T(p—1)

=3xM UL /=X VP It holds that, as T —c0 with N fixed,
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) 1 3 T 7 i 1 7 2 ~ - 2
UirD> — To? ZZ: Mit —1 (’71’: — it 71) = T2 [771'2T - 771-21 - ,=§2 (;7,-, — T 71> :|
1 T 5 )
:_ZTU ;(”zt ﬂi,t*l) +0p(1):>_§’

17("D) T2g 22” 1:>/ )—VY 1))

which proves (16) for M=D.
We next consider Model B. The GLSEs of @ =(a,, . . ., ay)"and j8 are given by

<Z>:<(zl/:,] g;i;) (Iy ®CC) Iy Qi iy ®dT)> B

(» ®"T)<1N ®CC)y

iy ®d;
0,(1)
:<a >+ 1 1/2
ﬂ NT Z”zT"‘Op (T )
which yields
- 1Y
fa=ni— (Gi— o) = (B=B)t =1~ fﬁZ'lzrﬁLop(ﬁ)-

i=1

Then, applying the orthogonal transformation Z(r) = HY(r) used in the proof of Theorem 1, it holds
that, as 7 — o0 with N fixed,

N
ZUi(TB):>§Z

=1 i=1

2
21Nz - —Z - 1NZ -
—§Z< F)-1) -2 (1)= 5 5; F(1)-1),

_ZV;”:;/O’ (Y(r> Zmn)
[y 2 X v 1Y 2
=2 ), PO X [ dr v () + g (S ()

i=1 k=1

> ),
/ (r)dr—2Z 1)/ rZ, (r)dr+lz (1)

:/0 (Z (r)—rz, (1) dr+ZZ2<r

i=2
Noting that {Z(r)| Z {¥(r)}, the relation (16) is proved for M=B. We can prove (16) for M= A and
C similarly, which establishes Theorem 3.
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Proof of Theorem 4: It follows from Theorem 3 that, as N becomes large,

N N

i=1 i=1

where me and X fm are defined in (16). The limiting distribution of R,SM ) for M = A, B is the same as

that of Q,f,A> in (12), which proves the first relation. For Models C and D, me = —1/2, whereas the

m.g.f. of XM is given in Tanaka (2017, Chap. 10) and
1 1,

E(X ™) :6—%cN+0(c§,), Var (XM= ———_ 2 +0(d),

which yields Rﬁfm — — 3 in probability. Then we consider
A (-3 3x)

1 <N (M)
ﬁzi—l Xz'

VN (RY+3)=

where

1 1 1 !
E<—§+3X[<M>>:—% Y HO(c). Var<—5+3XfM>>=g+0<C§v>~

Putting cy=c/N v '4, we now have

N(—C2 1)

o) 305 & 36
VN (R AV (=<
N(RY" 43 )= N< s 5 )

which proves the second relation, and Theorem 4 has been established.

Proof of Theorem 5: The relation (19) for Model D was proved in Tanaka (2017, Chap. 10). Let us
consider Model B, for which it holds that

_ 1 Y ~ 1 Y
20 =mi — S e+ o, VT, A (D)=t — S Air+0,(VT),
TN i=1 T'N i=1
where

A,~r=$ { S (e —p(O) 1)+ H%tht —p(O)Nis-1)

1=2

R T

(On+ 1) iz + %Zt”i,t—l .
1=2

It holds that
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;{Z(ﬂlt it - 1 (ﬂiT_*ZAkT> }
t=2
0 v
+F§<”” TXI: ) +0p (1),
r T
> () = 75 ) = X (e = mat) — 7 WtTZ’YkT

t

I
(8}
~
1l
(S}

( Z’]kT) +o, (1),

'ﬂ\~

which gives

;( i = ) =@ 0 -7 )

2

= NT’?:TZAAH- ( ZAkT)
=S e S | e
Mit = Mie -1 nir Nk:l kT NT’Yszzl Mkt

GI%T< t

+ LNy )2_1(l§: )2+ (1)
ﬁ;:z it NT P kT T Nk=1 Mir Op .

Thus it holds that, as 7 —© with N fixed,

1 2

il 1Y 2 1Y 2
—ZD;TB>:>—NK(1)ZXk+(NZXk) —HN{I—(Y,-(l)—ﬁZXk) }
o k=1 k=1 k=1

2 N I r & 2 1Y 2
Zy, 02/ (- S (= ,
P E O+ 0 | (v: () 2> ¢) dr (Ngmw)
where
g xi= {1 >+(92/' Yi(r)dr}
'\/TO'IT 1—5N N +1)1; (1 NO”zrr-
Applying the orthogonal transformation Z (1) = HY (), we obtain
2ZD“”:WNZ/ 72 (r) dr+29NZ/ Z,.(naz,(") +(z,()- %)’
_HN(ZZ|(1)X,—X1>—0,\2,{2X1/O rzl(r>dr—§X12}
~ \2 1 ~ \2
:<0N+]>(Z](1>_X1> +9]\2;/ (ZI<V>_VX1) dr
J0
N 1 N 1
+2 Y / Z2(r)dr +20y S / Z,(rdz,(r) -
i= 70 i= 70

where
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X :%{(HN-FI) Zl(1)+0,$ /017’21<7’>d’”}-

D

Noting that {Z(r)} = {¥(r)} and =_,(7,” (0) —7.”(0))?/T — & in probability, we prove (19) for
M =B after some manipulations. We can prove (19) for M=A and C similarly, which establishes

Theorem 5.

Proof of Theorem 6: For Models A and B we have Sy (0) =X, Z* (0) /N+0,(1), where Z\"' (0)
is defined in (19) and the m.g.f. of (Z\ () +6,) /62 is given in Tanaka (2017, Chap. 10) as

m(x) =E {exp{x(Zi(A)(@) +0y)/0% H

. -1/2
2x h

= /2 {cosh,u+ (c - 7) s 'u} s
HN u

where i =/ci—2x Differentiation of m* (x) gives us
1
Oy
Var ((Z{1(0)+ 0x) /0},) = L(z +0(ex) )+ O(1).

= 0

E(Z(0)+60) 03 ) = (1- ey +O(c]2\,))+%+ Olen),

It follows from the CLT that, as N —o0 under 6y = 6 /N"? and ¢, = ¢/N"?,

(4)
VN (SNH 9) —;9N> :>N(—c, 2),
‘N

which yields (20).
For Models C and D we have S.” () = 2,72\ () /N + 0,(1), where Z'9(0) is defined in (19)
and the m.g.f. of (Z\ (6) +6,) /62 is given in Tanaka (2017, Chap. 10) as
m©(x) =E [exp {x(Z,-<C)(0) +0y)/0% }]

oy /2

=e

J 2x
?4- 5Nlu4 (CN _0N> (CN+CN9N+9N> COSh,Ll

2x
+{cN "o (G +6) Oy +1)—cv63)

2x ) sinh u] "2
+5N,U4<<CN+1>0N_ZX<0N+1>>} } ,

where i = /c3—2x. Differentiation of m'“’ (x) gives us

1 1 1
E((Z,.<C><9>+ 9N>/e§) = i 6% — %cﬁ +0(62)+0(cd),
1
Var ((z}“(9>+ 0N>/efv) =5 toln.

It follows from the CLT that, as N —co under 6y = 8/N" and ¢ = ¢/N",
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which proves (21), and Theorem 6 has been established.
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