
1

『学習院大学　経済論集』第54巻　第１号（2017年４月）

Visual Explanation of Deformation Theories  
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ABSTRACT
In the paper we explain the deformation theories in shape analysis. The Geometry Driven Statistics 

offers a new horizon of the statistical methods. Using a thin-plate interpolation, the given configuration 
with landmark coordinates is featured by the principal warps which are eigenvectors of the bending 
energy matrix. In addition, the deformation between two configurations can be described by an affine 
transformation component and a non-affine transformation. The non-affine transformation can be 
described by partial warps. Seeing the partial warps help a lot us to understand the features of the 
deformation. We apply the deformation theories to a tiny economics deformation analysis. The concrete 
example will be helpful so that economics students can understand the deformation theories. In addition, 
the way of applying the shape analysis method is explained through the concrete example.

1  Introduction

The paper explains deformation theories in shape analysis. We can see various formations in our 
world. For example, they are formations made by American football players, and formations made by 
flying aircrafts. In the data analysis, we use many relationship diagrams. For example, the diagrams 
visualize a relationship among group companies or among economic entities. There, the small distance 
means a tight connection between two entities.

The formation may be changed to another formation when time goes by. We call the formation change 
a deformation. For a long time, it has been of great importance to measure shapes of objects in 
morphology. In the shape analysis, it is important how to compare different shapes; they have different 
sizes and orientations. The process of transforming different sets of data into one coordinate system is 
called image registration using register marks. That is a tough problem and the image registration 
problem had been discussed for a long time. However, the research results conducted by University of 
Leeds members and others made remarkable progresses in shape analysis to solve the problem[2]. The 
research field is called “statistical shape analysis” or “geometry driven statistics” [3, 4]. The field of 
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statistical shape analysis involves methods for the study of the shapes of objects where location, rotation 
and scale information can be removed to compare the shapes [1].

The recent outputs by the Mardia who is the main researcher of the field include various fields such as 
“Bayesian methods in structural bioinformatics,” “statistical approaches to three key challenges in protein 
structural bioinformatics,” and “Alcohol, babies and the death penalty: Saving lives by analysing the 
shape of the brain” [5-8]. In [7], Mardia, Bookstein, and Kent describe changes of shape in the brain and 
how to analyse the brain shapes statistically, and how to distinguish affected brains from normal ones. 
They revealed evidence of damage to the brain by the statistical methods. To compare the two shapes, 
we use landmarks which illustrate the corresponding pairs. The landmarks are translated, rotated, and 
scaled so that they are lined up and matched as closely as possible. The procedure is known as a 
generalized Procrustes analysis [7].

The shape analysis applications include medical imaging and morphometrics for biology. Mardia 
describes that non-Euclidean data driven mainly by underlying geometry arise in a variety of important 
new applications generated by areas such as bioinformatics, meteorology, new energy sources, and 
finance. In these applications, variables are observed on several different manifolds: circle, sphere, 
cylinder, space of orthogonal matrices, Stiefel manifold, Grassmann manifold, shape spaces[5]. In 
addition, some statistical challenges by the statistical shape analysis were conducted in managing the big 
data [9]. Although there are many papers on biology and medical imaging fields, as far as we know, there 
are no economics analysis paper by this statistical shape analysis. We would like to apply the statistical 
shape analysis methods for the economics analysis. The problem is that how to project the higher 
attribute space which we would like to analyse to the geometry world. In other words, we would like to 
find the geometry/formation in the economics applications so we can analyse them using the shape 
analysis methods.

The purpose of the paper is to explain the math processes concerning the thin-plate spline interpolation 
and the partial warp components which are the core theorems for the shape analysis. We shall explain 
them visually so that the readers can easily understand the math processes. Another purpose of the paper 
is to challenge of applying the shape analysis method to the economics analysis using a concrete 
example. Suppose that there are five companies in a company group and define the trading quantity 
indices among them. The time-change on the relationships can be illustrated in the partial warps.

In the next section, we shall explain the target problem which is the time-change analysis of the 
company relationship. In Section 3, we shall analyse the change using the thin-plate generation or so. 
Then the acceleration of changes can be expressed by the principal components called the partial warp. 
Finally we shall conclude the paper, considering points for using shape statistical methods in the 
economical applications.

2  Mathematics for Deformations

In the section, we shall explain the thin-plate spline interpolation, eigenvectors of its bending energy 
matrix and partial warps, which are cited from [3, 4, 8]. In this paper, we skip the Procrustes distance in 
order to focus on the partial warps.
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We concentrate on the m=2 dimensional case. In other words, we shall analyse two dimensional data 
such as diagrams, not three dimensional data.

Suppose that there are k landmarks in R2,  tj,  j = 1, ..., k, on the first figure mapped exactly into yj,  j = 1, 
..., k, on the second figure, namely there are 2k interpolation constraints,

(yj)r = Φr (tj),　r = 1,2,　j = 1, ..., k

and we write Φ(t) = (Φ1(t), Φ2(t))
T,　j = 1, ... , k, for the two dimensional deformation. Let

T = [t1, t2, ..., tk]
T,　Y = [y1, y2, ..., yk]

T

so that T and Y are both (k×2) matrices. A pair of thin-plate splines is given by the bivariate function

Φ(t) = (Φ1 (t), Φ2 (t))
T= c + At + W Ts (t)

where, Φ is (2×2),  t is (2×1),  c is (2×1),  A is (2×2),  W T is (2×k),  s (t) = (σ (t-t1), ..., σ (t-tk))
T is (k

×2), and

σ (h) =||h||2 log(||h||),　||h|| > 0

If ||h|| = 0, then σ (h) = 0. Matrix A means the affine transformation part and the matrix W is 
corresponding to the non-affine transformation part. From the given T and Y data, we can find the 
unknown A and W.

Figure 1 illustrates the σ(t–ti) function where t = [x, y]T, ti = [-1, 0]T. The function has one local 
maximum point at the given ti. The deformation from T to Y can be interpolated by the k base functions 
σ (t–ti) = ||t–ti||

2 log (||t–ti||),  i = 1, ..., k.

Figure 1: Base function for spline interpolation.

Additional constraints in order for the bending energy below to be defined as follows:

1k
TW = 0,　TTW = 0

1k is the k-vector of ones. The pair of thin-plate splines which satisfy the above constraints are called 
natural thin-plate splines, represented by W.  The expression can be re-written in a matrix form
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So we can obtain the concrete expression the affine transformation matrix A and the spline matrix W. 
The bending energy matrix is defined as Г11 in the following expression.
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We call Г11 the bending energy matrix Be of which size is (k×k). It can be proved that the 
transformation of Φ(t) = (Φ1(t), Φ2 (t))

T = c + At + W T s(t) minimizes the total bending energy of all 
possible interpolation functions mapping from T to Y.

After an eigen-decomposition of Be we can get (k-3) non-zero eigenvalues λ1, λ2, ..., λk-3 with (k-3) 
corresponding eigenvectors γ1, γ2, ... ,γk-3. We call the eigenvectors principal warp eigenvectors. Because 
(S)ij = σ (ti-tj) has no Y related data and then Г has no Y related data, in Be there is no information of Y. In 
other words, the principal warp eigenvector expresses the principal component of the formation T. We 
define (k-3) principal warps Pj(t) as follows:

Pj(t) = γj
T s(t)

where γj
T is (1×k), s(t) = (σ(t-t1), ..., σ(t-tk))

T is (k×2), and Pj (t) is (1×2). Given the x and y coordinate, 
a value is calculated which expresses the principal warp of the point. 

Next, we would like to express the deformation T to Y, using the principal warps of T. In other words, 
we shall express the deformation from the standpoint based on the T formation. We call the deformation 
partial warps and define as follows:

Rj(t) = YTλj γj γj
T s(t)

where YT is (2×k),  γj is (k×1),  γj
T is (1×k),  s(t) = (σ(t-t1), ... σ(t-tk))

T is (k×2),  and  Rj(t) is (2×2).
The partial warp is a bivariate function of which size is (1×2). The warp part W T s(t) can be expressed 

by the addition of (k-3) partial warps. The math process may be difficult to understand. However, the 
following sections offer the concrete example visually, which will be useful for the understanding.
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3  Trading Quantity Relationship

In the section, we shall define the target economics problem.
Suppose that five automobile companies and that we know the trading quantities and investment 

amounts among them so that we can define the trading amount index trakingQij  between two companies. 
If they are countries, not companies, the import and export amounts would be used to define the index. 
From the index, we can define the distance between two companies. For example, distance rij may be 
define as rij =

k
tradingQij

 where k is positive constant value. When {tradingQij} are given between any two 
companies, we can define the individual distance between the two companies and we can set the 
simultaneous equations. In general we cannot solve the equations in two dimensional world. Then higher 
dimensional world is required to express the solution. However, we would like to make the two 
dimensional formation data for the visualization. Then some process to reduce the number of dimensions 
is needed.

In the following we shall suppose that two dimensional formation T0 and Y0 are given. This is because 
we would like to visualize the deformation in 2 dimensional world. The given form data T0 and Y0 are 
shown in Figure 2. The figure data are artificially defined by us and there is no relationship to the real 
company data.

Figure 2: The given formation T0 (mark “ ● ”) and Y0 (mark “X”). Y0 is the deformation of T0. 
The two companies “G” and “T” are marked here. To see the correspondences on the 

deformation, the dash lines are added in the right figure.

We made the sample data so the deformation would mean that company T and G increases the trading 
and that the other three companies increase the trading with G.
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4  Visualization of Trading Quantity Relationship

In the section, we visualize the deformation process using the sample data given in Section 3.
First the two figures are transformed to the pre-shape. The term pre-shape means that is centered to 

the point (0, 0) and scaled by the centroid size but that is not yet rotated [3]. Figure 3 shows the pre-
shapes named T and Y.

Figure 3: The pre-shapes of T and Y. The dashed lines show the deformation directions on 
the given formation T (mark “ ● ”) and Y (mark “X”).

The deformation is divided to the two parts; they are the affine component and the non-affine 
component. We call the non-affine component the partial warps. In the section 2, we explain the 
deformation

Φ(t) = (Φ1(t), Φ2(t))
T = c + At + W T s(t)

In the expression, At means the affine component and the W T s(t) is the partial warp. In the partial 
warp component, s(t) means the linear combination of five base functions for spline interpolation with 
the local maximum at the given landmarks of the T (See Figure 1); the number of landmarks is five. The 
matrix W T means the coefficients of the spline base functions. The non-affine component is also divided 
to the partial warps. In the case, k=5 landmarks and m=2 dimension. Then the number of the principal 
components is k−(m+1)=2. Then the number of partial warps is also two.

We shall illustrate the Cartesian transformation grids, using a pair of thin-plate splines for the 
deformation form T to Y. Figure 4 shows the transformation grids for the deformation from T to Y. The 
top grid shows the initial square grid placed on the pre-shape T. In Figure 4, the bottom figure shows the 
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pre-shape Y. The corresponding grid lines are skewed and warped by the deformation. Roughly speaking, 
we can see that some warps are found around the company “T” and “G” line; the data are artificially 
made and there is no relationship to the real ones. The company “S” gets nearer to the “T” and “G” line. 
On the other hand, company “N” a little bit gets away from the “T” and “G” line. To express the warps, 
the orthogonal grid lines are tortured.

Figure 4: Transformation grids for the deformation from T to Y is the addition of the affine 
component of T to Y and the partial warp component of T to Y.
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Figure 5: The element factor in the first principal warp of T. The elements show the 
opposite direction in companies “N (#3)” and “S (#4)” relative to other three ones.

−0.16770228055950034
−0.14075508451681845
0.754595431713158
−0.5993203445880348
0.153182277951196

Figure 6: The element factor in the second principal warp of T.

0.5492652336095578
−0.6595988002248526
−0.20225508365143477
−0.13821728320248292
0.45080593346921316

Next we shall illustrate the non-affine transformation component. For the case, the bending energy 
matrix is as follows:

1.1349099996244187 −0.9114916192742426 −1.331977469918031 0.5607732131096325 0.5477858764582223
−0.9114916192742426 1.473448597075468 −0.43155687510994284 0.9397328809680172 −1.070132983659299
−1.3319774699180311 −0.4315568751099429 4.603439587868121 −3.4731240806672043 0.6332188378270576
0.5607732131096326 0.9397328809680158 −3.4731240806672052 2.8835455780342967 −0.9109275914447408
0.5477858764582224 −1.0701329836592994 0.6332188378270576 −0.9109275914447407 0.8000558608187597

We calculate the eigenvectors and eigenvalues of the matrix. Then, we shall find the principal warp 
Pj(t) = γj

T s(t), j = 1, 2. The T formation is represented by the two eigenvectors of the bending energy 
matrix as shown in Figure 5 and 6. The eigenvalues are 7.9 and 3.0 which shows that the first principal 
warp has a larger effect than one of the second principal warp. The two principal warps Pj(t) = γj

T s(t) are 
found as follows:

The first principal warp function is
- 0.167702 (Abs[0.126149 - x]^2 + Abs[0.546645 - y]^2) Log[Sqrt[Abs[0.126149 - x]^2 + Abs[0.546645 - y]^2]]
- 0.140755 (Abs[0.336397 - x]^2 + Abs[0.0560662 - y]^2) Log[Sqrt[Abs[0.336397 - x]^2 + Abs[0.0560662 - y]^2]]
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+ 0.754595 (Abs[-0.224265 - x]^2 + Abs[0.126149 - y]^2) Log[Sqrt[Abs[-0.224265 - x]^2 + Abs[0.126149 - y]^2]]
- 0.59932 (Abs[-0.36443 - x]^2+ Abs[-0.154182 - y]^2) Log[Sqrt[Abs[-0.36443 - x]^2 + Abs[-0.154182 - y]^2]]
+ 0.153182 (Abs[0.126149 - x]^2 + Abs[-0.574679 - y]^2) Log[Sqrt[Abs[0.126149 - x]^2 + Abs[-0.574679 - y]^2]]

The second principal warp function is
+ 0.549265 (Abs[0.126149 - x]^2 + Abs[0.546645 - y]^2) Log[Sqrt[Abs[0.126149 - x]^2 + Abs[0.546645 - y]^2]]
- 0.659599 (Abs[0.336397 - x]^2 + Abs[0.0560662 - y]^2) Log[Sqrt[Abs[0.336397 - x]^2 + Abs[0.0560662 - y]^2]]
- 0.202255 (Abs[-0.224265 - x]^2 + Abs[0.126149 - y]^2) Log[Sqrt[Abs[-0.224265 - x]^2 + Abs[0.126149 - y]^2]]
- 0.138217 (Abs[-0.36443 - x]^2 + Abs[-0.154182 - y]^2) Log[Sqrt[Abs[-0.36443 - x]^2 + Abs[-0.154182 - y]^2]]
+ 0.450806 (Abs[0.126149 - x]^2 + Abs[-0.574679 - y]^2) Log[Sqrt[Abs[0.126149 - x]^2 + Abs[-0.574679 - y]^2]]

We shall illustrate the principal warps of the T formation as surfaces in Figure 7.

Figure 7: The initial formation T and its two principal warps which are the first principal 
warp and the second principal warp.

The principal warps has no information of Y. The principal warps express the relationship among the 
five landmarks on T; the significant part is (S)ij = σ (ti-tj) of which size is (k×k). Just seeing the initial T 
formation, we can see that the nearest pair is #3 and #4. The first principal warp expresses the nearest 
pair by making #3 up and #4 down on the thin-plate. In the second principal warp, the movement that 
companies #3, #4, and #5 get near to the vicinity of the “T(#1)-G(#5)” line. Especially #2 landmark gets 
near the T-G line. The movement is made getting #1 and #5 up and getting #2 down.

The geometry driven statistics offers a new interpretation of the relationship diagram by the natural 
thin-plate interpolation. The resultant transformation grids give us how the thin-plate has been bent. The 
eigenvectors, the principal warps, can tell us the principal component of the non-affine formation. In the 
non-affine deformation from T to Y, the formation Y also has its eigenvectors. The difference between 
the eigenvectors of T and eigenvectors of Y can be described based on the eigenvectors of T, which is the 
partial warps Rj(t) = YT λj γj γj

T s(t).
The non-affine formation component of the deformation is called a partial warp component and can be 

described as an addition of each partial warps. In the example, because the number of the landmarks is 
five, we can obtain the first and second partial warps (See Figure 8).
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Figure 8: The partial warp component in Figure 4 can be described as the addition of the 
first partial warp and the second partial warp.

The partial warps in Figure 8 show T + Rj (t) transformation. Only Rj (t) is illustrated in Figure 9. 
Input the five landmark t of T, we calculate the vector Rj (t) of which size is (2×1) and plot them. Let us 
see the first partial warp in Figure 9. The landmarks #1 and #5 hardly move and other three move. Only 
#2 moves away from the T-G line and #2 and #3 get near to the T-G line. The coordinate difference on 
each landmark R1(t) is plotted on the line. The second partial warp in the right figure shows that the T-G 
line moves to the right direction. The coordinate difference on each landmark R2(t) is plotted on the line 
as well as R1(t). The circle mark “ ● ” on the line represents the contribution of each landmark ti onto 
the partial warp. If ti has no movement by the partial warp, then the difference is zero and the mark “ ● ” 
is plotted at (0, 0). The decline of the line can be calculated as a ratio of YT λj γj which is (2×1); The YT 
γj  is called the j-th partial warp scores for Y from T. Figure 9 shows that both decline coefficients are 
negative and that the first partial warp decline is larger than the second one.
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Figure 9: The first partial warp (the left) and the second partial warp (the right). The initial ti 
marked by the small “ ⃝ ” is moved to the corresponding point marked by the small “ ▲ ”. 

The Rj (ti), i = 1, ..., 5 which corresponds to the difference are plotted by the mark “ ● ” and 
they make the line of which decline is the partial warp score ratio.

5  Conclusion

In the paper, we describe an application of geometry driven statistics to the economics example. When 
a set of landmarks coordinates is given, the shape analysis method can give us the principal warps of the 
configuration as eigenvectors of the bending energy matrix. The shape analysis method can be applied to 
various economics analyses. In the paper, we suppose that the relationship diagram among automobile 
companies is given. The company relationship diagram is not easy to be obtained as two dimension 
diagram; some dimension reducing process is required for that. However, we have many two 
dimensional plot data in the field of economics. They include various kinds of big data. As future work, 
we will analyze the data by the shape analysis. In addition, the deformation between two formations can 
be expressed by the partial warps. The partial warp can be expressed by the eigenvector and the impact 
factor of each partial warp can be expressed by the eigenvalue. We have been using the eigenvectors 
through Principal Component Analysis, Singular Value Decomposition and so forth. The resultant 
eigenvectors are significant to understand the data relationship or correlation. Then visualization of the 
eigenvectors helps us understand that easily. We will continue to apply the shape analysis methods to 
many economics data analysis.
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