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Abstract

This thesis is organized in the following manner.

Chapter 1:

In Chapter 1, we describe what revenue management is and statistical methods applied for

demand analysis in revenue management. The pick up method to forecast demand, one of

the most robust forecast methods for the hotel or airline demand, is discussed in details. The

demand is often censored when the resource is limited and cannot be easily changed. The EM

algorithm developed by Dempster, Laird, and Rubin (1977) is presented to estimate the true

demand for two cases; one where the demand has a normal distribution and the other where

it has a Poisson distribution. Further discussed are the regression models to analyze demand.

Three regression models reviewed in this chapter are a linear regression model and count re-

gression models, Poisson and negative binomial. A count regression model is often appropriate

for hotel or airline demand analysis as the demand analyzed is discrete. The EM algorithm is

also presented for linear regression and Poisson regression models for censored data.

Chapter 2:

In Chapter 2, we estimate univariate price response functions for the hotel room demand to

determine the hotel price effects on demand. When the parameter estimates for the other ho-

tel prices are significant and positive, we can determine that the hotels are price competitive.

Empirical study was made using the booking data of three major hotels. Prices hotels offer are

numerous and fluctuate daily. So the issue is which price should be used for the analysis. Since

customers are sensitive to low prices, 5 price categories are created from the low prices. First

descriptive analysis is made, and then statistical analysis which applies Poisson and negative

binomial regression models.

Chapter 3:

In Chapter 3, we investigate the selection procedure that selects, from k populations, the subset

that contains the largest mean so that the probability of such selection is larger than or equal

to the prespecified value, P ∗. This methodology was first developed by Gupta (1963) for inde-

pendent sequences of random variables. In this chapter, a method for dependent sequences of

random variables is investigated and the selection procedure for the Gaussian ARMA processes

is presented. The result of a simulation study is provided in order to see finite sample properties

of the suggested selection rule.
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1 Statistical methods related to

revenue management

1.1 Revenue management

1.1.1 What is revenue management ?

Revenue management (RM) was originally developed in the airline industry. In the early

1970’s, the airline industry was deregulated and price competition became fierce. The new

airlines came in the market and the existing major airlines faced this serious price competition.

The new airlines were able to offer low prices as they structured the company so that they

could operate flights with low cost. However, the existing airlines could not compete with low

prices as they already had high fixed costs for airplanes, salaries etc. Under this circumstance

revenue management was developed where capacity, the facilities available and required to offer

service (e.g. seats in case of airlines), is controlled instead of prices. Refer to Cross (1998) for

further RM history details.

Prices are set for each market segment (a group of people that share one or more character-

istics) and various products developed for each market segment are determined to be offered or

not to be offered at each point of sale to maximize revenue. For example, leisure passengers can

reserve flights far in advance, while business passengers tend to book or change flights very close

to departure dates. With these market segments (leisure and business), airlines can sell some

of the seats to leisure passengers in advance, keeping just enough seats for business passengers

willing to pay higher fares. This results in higher revenue from selling as many seats as possible

if the sale of seats is controlled well enough using the fare restrictions (for example, the fares

for leisure passengers have an advance booking requirement, restriction on cancellation etc.).

There is no simple definition for revenue management officially or widely accepted. It is often

said to be the science to sell the right products to the right customer at the right time for the

right price. In Shizue Sunami (2009), revenue management is defined to be “the method to

control the capacity based on the demand estimate to maximize revenue in the industries with

fixed capacity ”. This is a narrowly defined definition of revenue management. Talluri and

Van Ryzin (2005) say that revenue management is applied even in the manufacturing industry

where price is controlled.

The characteristics of the industries where revenue management is effective are;

1. Capacity is fixed or not easy to change in a short term.

When capacity can be easily changed, the revenue maximization is possible by changing

the capacity to meet the demand. However, immediate capacity change is not possible when
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capacity is fixed (e.g. aircrafts for airlines, guest rooms for hotels etc.) Then, the firms must

make do with what they have.

2. Fixed cost is high, while variable cost is low.

In general, variable costs fluctuate in proportion to the goods sold. However, variable cost

fluctuation is small in case of the industries such as airlines and hotels as the capacities are

fixed and most of the costs are incurred from this fixed capacity and therefore, fixed cost is

high.

3. Products for sale are perishable.

Products for sale cannot be inventoried once the sale date passes a certain date. For example,

the guest room stay for a certain date no longer has any value after that date.

4. Demand is predictable.

A demand forecast is necessary for a good capacity control to well utilize the capacity.

5. Customer segmentation (market segmentation) is possible.

Different prices are set for the same resource. The availability for the products priced accord-

ingly may be changed based on the demand forecast during the booking process. The prices

have different restrictions (advance reservation, restricted duration, time of travel etc. in case

of airlines) which deter some market segments from purchasing the products and attract other

market segments.

1.1.2 Industries that can apply revenue management

Revenue management is well established in the airline industry as they have developed and

applied revenue management roughly for the last 40 years. RM is also well practiced in the

hotel industry which has the characteristics mentioned in the section 1.1.1. Although there

are a lot of similarities between airlines and hotels, there are some differences. Hotels generate

revenue from not only rooms but also banquet rooms, restaurants, health clubs etc. It will be

very complex if RM considers all these aspects. Therefore, the hotel RM in principle handles

only guest room revenue. Another unique point for the hotel RM is the length of stay. For

example, they may accept only the stays over a certain duration during a high-demand period.

On the other hand, they may set an upper limit on the duration of stay so that guests staying

for a long period and paying a low price would not displace the guests staying for a short period

and paying a higher price.

Revenue management is also practiced in other industries such as cruise lines, rent-a-car,

retailing, and manufacturing, although it is a rather new practice in some of them. Each in-

dustry has their own characteristics different from airlines. Some retailers also have to deal

with perishable products. Grocery retailers sell highly perishable products, so do apparel re-

tailers. High-tech retailers have problems with perishable products, because high technology

6



makes high-tech products obsolete very quickly. Although we can say these retailer sell perish-

able products, they control sale of products by discounts and promotions, not by capacity like

airlines. So it is not a classical RM these retailers apply.

1.2 Demand analysis for revenue management

1.2.1 Pickup model

The demand estimate is a critical factor for revenue management. Decisions for price setting,

availability of products for sale, i.e. whether to open or close the sale of products, etc. all require

demand forecast. Inaccurate forecast results in revenue decline.

Weatherford and Kimes (2003) compared several forecasting methods including pickup meth-

ods, linear regression and moving average, using the hotel data. The results show the pickup

method and the regression produced the lowest error.

The pickup model is a model often applied to estimate the airline or hotel reservations.

Skwarek (1994) and Wickam (1993) provided the details of the model and Fukuchi and Sunami

(2005) statistically expressed the model and explained the EM algorithm.

Sunami (2009) estimated the daily room nights sold applying the advanced pickup model for

a resort hotel that provided the booking data. The forecast was made 28 days prior to the

stay nights for 7 months. Two pickup models were used, one using the one day pickup period

and the other one week. (See below for the definition of pickup.) Pickup is assumed to have a

Poisson distribution for one day pickup period and a normal distribution for one week pickup

period. Censored demand was unconstrained using the EM algorithm explained later in this

section. The mean absolute error (MAE) was determined,
∑n

i=1 |Ŷi − Yi|/n, where Yi is the

room nights sold on the i stay night and Ŷi is its estimate. The one week pickup period worked

slightly better.

The pickup model and the EM algorithm are next reviewed based on Fukuchi and Sunami

(2005), using the case of the hotel FIT (free individual traveler) booking (reservation) estimate.

booking data

Booking data is the time-series room reservation data for a specific arrival day. A hotel keeps

a daily record of no. of bookings and cancellations from the day when the first booking is made

till the arrival day. Pickup is the incremental booking during a certain interval called a pickup

period. The pickup period is to be one week in this section. Let Y0(0) be the bookings on hand

for a specific arrival day on that day, and Y0(t) be the bookings on the day, t weeks prior. Then

the booking data is;

Y0(0), Y0(1), Y0(2), . . .

Let Yi(t) be the bookings for the arrival day, i weeks prior to the subject arrival day on the

day, t weeks prior. Then the booking data for the arrival day, i weeks prior, is

Yi(0), Yi(1), Yi(2), . . .
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The pickup for the period from t weeks prior till t− 1 weeks prior is

Xi(t) := Yi(t− 1)− Yi(t).

additive pick up model

Suppose the booking data for the same day of the week as the arrival day on the subject is

available and that K booking data are closed. We are to forecast the bookings on hand for the

arrival day on the days, 0, 1, 2, . . . , ℓ− 1 weeks prior;

Y0(0), Y0(1), Y0(2), . . . Y0(ℓ− 1).

The total number of FIT bookings has an upper limit called booking limit as the total

number of rooms, C, is fixed. Deducting the group booking, Gi(t), from the total rooms and

then adding the overbooking upper limit, Oi(t), gives the booking limit:

Ui(t) = C −Gi(t) +Oi(t). (1.1)

It is natural to consider Gi(t) is also a random variable. Therefore,

Yi(t) ≤ Ui(t), t = 1, 2, . . .

In this paper, the overbooking upper limit is not considered although it is a very important

factor. Refer to Chapter 4 in Talluri and Van Ryzin (2004) in regards to how to determine the

overbooking upper limit. The booking limit leads to the pickup upper limit. The pickup upper

limit on the day t weeks prior,

ci(t) = Ui(t− 1)− Yi(t). (1.2)

Now the stochastic model is defined to express the time series change in the bookings on

hand.

Let Ti be the day when the first booking is made. Ti is assumed to be constant and dependent

on i. Let Di(t) be the actual incremental demand from t weeks prior to t− 1 , which would be

the pickup if no upper limit existed. It is also a random variable.

Pickup is not necessarily the incremental demand, because the daily bookings are limited by

the upper limit, ci(t). We define the model,

Yi(t) = Yi(t+ 1) +Xi(t+ 1), t = 0, 1, 2, . . . , Ti − 1 (1.3)

Yi(Ti + 1) = 0. (1.4)

Xi(t) is determined to be;

Xi(t) =

{
Di(t), when Di(t) ≤ ci(t)

ci(t), when Di(t) > ci(t).
(1.5)

The equation (1.5) states that the incremental demand is censored when it exceeds the pickup

upper limit.

For the random variable Di(t), t = 1, 2, . . . , Ti, i = 0, 1, 2, . . . , n, two assumptions are made;
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assumption 1: For all t, D0(t), D1(t), D2(t), . . . , Dn(t) are independently and identi-

cally distributed.

assumption 2: For all i, Di(1), Di(2), . . . , Di(Ti) are independent, and the

marginal distribution for each variable is not necessarily the same.

Let E(Di(t)) be µ(t). The model expressed in the equations (1.3) through (1.5) is the additive

pickup model.

Y0(ℓ− 1) can be expressed as;

Y0(ℓ− 1) = Y0(ℓ) +X0(ℓ). (1.6)

Therefore,

Ŷ0(ℓ− 1) = Y0(ℓ) + min{µ̂(ℓ), c0(ℓ)} (1.7)

is the natural estimator for Y0(ℓ − 1). The equation (1.7) is used sequentially to obtain the

estimators of Y0(ℓ− 1), Y0(ℓ− 2), . . . Y0(0);

Ŷ0(ℓ− 1), Ŷ0(ℓ− 2), . . . , Ŷ0(0). (1.8)

The incremental demand estimator, µ̂(t), is necessary to forecast the final number of rooms

used on a specific arrival day, Y0(0). There are two additive pickup methods for the forecast.

In this section, the incremental demand is assumed not to exceed the pickup upper limit, i.e.

Xi(t) = Di(t). Then, the average of the historical pickups is the unbiased and appropriate

estimator for µ(t).

classical pickup method

The classical pickup method uses only the booking data for the stay nights that arrived.

Suppose the lead time is ℓ weeks to estimate Y0(0) and the booking data for the arrival days up

to N weeks prior are available and to be used. The booking data used are those for the arrival

days of the same day of the week as that of the arrival day for which a forecast is to be made.

The complete booking data;

Yℓ(0), Yℓ(1), . . . , Yℓ(Tℓ)

Yℓ+1(0), Yℓ+1(1), . . . , Yℓ+1(Tℓ+1)

...

YN(0), YN(1), . . . , YN(TN).

Then the estimator for µi(t),

µ̂i(t) =
1

N − ℓ+ 1

N∑
i=ℓ

Xi(t). (1.9)
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advanced pickup method

In addition to the complete booking data, the advance pickup method applies the partial

booking data, the data available for the arrival days which have not arrived yet. When es-

timating the final number of rooms used on a specific arrival day ℓ weeks prior, the partial

booking data is;

Yℓ−1(1), Yℓ−1(2), . . . , Yℓ−1(Tℓ−1),

Yℓ−2(2), Yℓ−2(3), . . . , Yℓ−2(Tℓ−2),

...

Y1(ℓ− 1), Y1(ℓ), . . . , Y1(T1). (1.10)

For t such that 1 ≤ t ≤ ℓ, the estimator for X0(t),

µ̂(t) =
1

N − ℓ+ t

N∑
i=ℓ−t+1

Xi(t). (1.11)

1.2.2 Estimation of the incremental demand from the censored data

When the resource has an upper limit and the observed demand is the same as the upper

limit, the actual demand often exceeds it. Then the average of the observed demand is smaller

than the average of the actual demand. In case of the pickup method, the pickup estimate

would be lower than what it should be if censoring is not taken into consideration.

The maximum likelihood is often used to estimate parameters when the parametric form of

the demand probability distribution is given.

First, we define

C = {i : 1 ≤ i ≤ n xi = ci}

O = {i : 1 ≤ i ≤ n xi < ci},

where xi(i = 1, 2, . . . , n) is the observed incremental demand and ci(i = 1, 2, . . . , n) is its upper

limit. Let f(zi, θ) be the probability density function of the incremental demand, zi, where

θ is the unknown parameter and F (zi, θ) be its cumulative distribution function. Then, the

likelihood function is

L(θ) =
∏
i∈O

f(xi, θ)
∏
i∈C

(1− F (xi, θ)), (1.12)

given the observed incremental demand, xi(i = 1, 2, . . . , n).

It is very difficult to numerically obtain the maximum likelihood estimator for the likelihood

function (1.12) and the EM algorithm developed in Dempster et al. (1977) is generally applied in

the demand estimate from the censored data. The EM algorithm is now presented for the normal

distribution and the Poisson distribution. When the distribution has other parametric forms,

the method is the same except that the different formulas for E[X|X > a] and V [X|X > a] are

applied.
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EM algorithm-Normal distribution

Suppose the incremental demand, X, has the normal distribution, N(µ, σ2). Let ϕ be the

probability density function of the standard normal distribution and Φ be its cumulative dis-

tribution function. Then the likelihood function is

L(µ, σ2) =
∏
i∈O

1

σ
ϕ

(
xi − µ

σ

)∏
i∈C

{
1− Φ

(
xi − µ

σ

)}
. (1.13)

We now obtain the MLE for (µ, σ) with the EM algorithm. The 2 formulas required are;

E[X|X > a] = µ+
ϕ(a∗)

1− Φ(a∗)
σ, (1.14)

V [X| > a] =

[
1 +

a∗ϕ(a∗)

1− Φ(a∗)
−
{

ϕ(a∗)

1− Φ(a∗)

}2
]
σ2, (1.15)

where

a∗ =
a− µ

σ
.

The steps for the EM algorithm are as follows. Note that ai(i = 1, 2, . . . , n) is the pickup upper

limit.

Step 1 (Initialize µ and σ2): Obtain the sample average and variance of the uncensored incre-

mental demand to be used as the initial values, (µ(0), (σ2)(0)). Let k = 0.

Step 2: (E step): Set

a
∗(k)
i =

ai − µ(k)

σ(k)
.

Obtain

µ(k)
ai

= µ(k) +
ϕ(a

∗(k)
i )

1− Φ(a
∗(k)
i )

σ(k) (1.16)

v(k)ai
=

1 + a
∗(k)
i ϕ(a

∗(k)
i )

1− Φ(a
∗(k))
i )

−

{
ϕ(a

∗(k)
i )

1− Φ(a
∗(k)
i )

}2
 (σ2)(k). (1.17)

Compute

S(k) =
∑
i∈O

xi +
∑
i∈C

µ(k)
ai
, (1.18)

S
(k)
11 =

∑
i∈O

x2i +
∑
i∈C

{
(µ(k)

ai
)2 + v(k)ai

}
. (1.19)

step 3: (M step) Obtain

µ(k+1) =
1

n
S(k), (1.20)

(σ2)(k+1) =
1

n
S
(k)
11 − (µ(k+1))2. (1.21)

Repeat the step 2 and step 3 until the parameter estimates converge.
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EM algorithm - Poisson distribution

Assume that the incremental demand, X, has a Poisson distribution with the mean, λ. The

likelihood function is

L(λ) =
∏
i∈O

p(xi, λ)
∏
i∈C

P (xi, λ), (1.22)

where

p(x, λ) =
e−λλx

x!
, (1.23)

P (c, λ) = 1−
c∑

j=0

e−λλj

j!
. (1.24)

We now obtain the MLE with the EM algorithm using,

Formula 1:

E(X|X > C) = λ

(
1 +

p(C, λ)

P (C, λ)

)
. (1.25)

See the proof for this formula in Appendix A.

The EM algorithm is now provided. Note that ci(i = 1, 2, . . . , n) is the upper limit for Xi.

Step 1. (Initialize λ): Obtain the sample average of the uncensored incremental demand,

pickup, to be used as the initial value, λ0, and set k = 0.

Step 2. (E step): Obtain

λ(k+1) = λ(k)
(
1 +

p(ci, λ
(k))

P (ci, λ(k))

)
, (1.26)

w(k+1) =
∑
i∈O

xi +
∑
i∈C

λ
(k+1)
i . (1.27)

Step 3. (M step): Compute

λ(k+1) =
1

n
w(k+1). (1.28)

Repeat the step 2 and step 3 till the parameter estimate converges.

1.3 Regression models useful for demand analysis

In this section, linear and count regression models are reviewed. As used in Chapter 2, the

regression models are useful and practical in analyzing demand. In Revenue Management,

the data is often censored as the capacities are limited. Therefore, we discuss such cases for

regression models.

1.3.1 Linear regression model

Often used for demand analysis is the linear regression model;

yi = x′
iβ + εi, (1.29)
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where the variable yi, i = 1, 2, . . . , N , is a dependent variable, while xij, i = 1, 2, . . . , N, j =

1, 2, . . . , J are independent variables. εi ∼ NID(0, σ2), i = 1, 2, . . . , N .

Then, the estimates of the parameters,

β̂ = (X ′X)−1X ′y. (1.30)

Weatherford and Kimes (2003) applied the regression model to estimate the hotel final book-

ings on the arrival day (day 0) using the bookings on hand currently (day ℓ) as an independent

variable (e.g., Forecast@Day 0=a+b x Bookings@Dayℓ). In Lee (2011), the linear hotel demand

models are suggested using prices, average competitor prices, days prior, length of stay, day of

week of arrival date, month of arrival date and Saturday night stay, as the possible explanatory

variables. Steiner et al. (2007) estimate the price impact on unit sales with a linear regression

model using retail scanner data. In Stefanescu (2009), a multivariate demand model is devel-

oped allowing correlated and censored demand; D(t) = a(t) +W (t) ∗ v+ ε(t). The vector D(t)

denotes the random demand in period t and v is a random shock; v ∼ (0,
∑∑∑

v). The influence

of the random shock on the demand for each period t is weighted by the n×n diagonal matrix

W (t). The error terms, ε(t), are normally distributed, ε(t) ∼ N(0, Inσ
2
e) and are assumed to

be independent across time periods t = 1, 2, . . . , T and to be independent of the random shock

v.

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

1.3.2 Count regression model

Poisson regression model

A count variable, Yi, i = 1, 2, . . . , N , is independently distributed and has a Poisson distribu-

tion with mean, λi,

P (Yi = y) =
e−λiλyi
y!

. (1.31)

The Poisson distribution has the equidispersion property, that is,

E[Yi] = λi,

V [Yi] = λi.

The Poisson regression model is obtained by setting

E[Yi] = λi = exp(x′
iβ), (1.32)

where xi is an independent variable, a vector with J elements, i.e., xij, j = 1, 2, . . . , , J . As

V [Yi|Xi] = exp(x′
iβ), the Poisson regression is heteroskedastic.

Since the observations, Yi, are independent, we can use the log likelihood function to estimate

β.

As the log likelihood function is globally concave, the MLE can be obtained by the Newton-

Raphson method.
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For any model with E(Y |X) = exp[x′β], differentiation yields

∂E[Y |X]

∂xj
= βj exp(x

′β), (1.33)

where xj denotes the jth regressor.

The equation (1.33) implies that one unit change in xj increases βj exp(x
′β) in E[Y |X]. Thus

100βj is the percentage increase of the expectation of Y .

The test statistic,

z =
β̂j

ŝe(β̂j)

is used for testing : H0 : βj = 0 versus H1 : βj ̸= 0. This statistic will follow a standard normal

distribution asymptotically when H0 is true. If H0 is false, |z| will tend to be large. We then

compare z to the critical value of the standard normal distribution to determine the significance

of the parameter estimate, β̂j.

See Winkelmann (2010) and Cameron and Trivedi (2005) for the details of the Poisson re-

gression model.

Negative binomial regression model

The negative binomial distribution is one of the probability distributions used to model count

data and does not have the property of equidisperion that the Poisson distribution has. It is a

mixture of Poisson and gamma distributions. Its derivation is as follows;

Let y have a Poisson distribution with mean, λ̃,

f(y|λ̃) = e−λ̃λ̃y

y!
. (1.34)

λ̃ = λν and ν has a distribution function g(ν) = νδ−1e−νδδδ/Γ(δ), ν, δ > 0. This is a gamma

distribution with E[ν] = 1 and V [ν] = 1/δ. Then, the marginal probability density function of

y|λ, α, which is its probability density function, is

h[y|λ, α] = Γ(α−1 + y)

Γ(α−1)Γ(y + 1)

(
α−1

α−1 + λ

)α−1 (
λ

α−1 + λ

)y

α > 0, y = 0, 1, 2, . . . , (1.35)

where δ = α−1. This is called the negative binomial 2 (NB2) model and its first two moments

are

E[y|λ, α] = λ (1.36)

and

V [y|λ, α] = λ(1 + αλ). (1.37)

Let the count variable, Yi, t = 1, 2, . . . N , be independently distributed and have NB2 and

xi be a vector with J elements, i.e., xij, j = 1, 2, . . . , , J . The negative binomial 2 regression

model is defined as;

P (Yi = y) =
Γ(α−1 + y)

Γ(α−1)Γ(y + 1)

(
α−1

α−1 + λi

)α−1 (
λi

α−1 + λi

)y

α > 0, y = 0, 1, 2, . . . , (1.38)
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where λi is set to be exp(x′
iβ).

The parameters, β, are estimated by Maximum Loglikelihood. As E(Y |X) = exp[x′β], the

coefficients are interpreted in the same manner as for the case of Poisson regression model.

Differentiation of E(Y |X) = exp[x′β] yields

∂E[Y |X]

∂xj
= βj exp(x

′β), (1.39)

where xj denotes the jth regressor.

The equation (1.39) implies that one unit change in xj increases βj exp(x
′β) in E[Y |X]. Thus

100βj is the percentage increase of the expectation of Y .

The test statistic, z = β̂j/ŝe(β̂j), is used to test the significance of the parameter estimates

as in case of Poisson regression.

See Winkelmann (2010) and Hilbe (2007) for further details of the negative binomial 2 (NB2)

regression model.

1.3.3 Linear regression model with censored data

The linear regression model is;

yi = x′
iβ + εi (i = 1, 2, . . . , n, n+ 1, . . . , n+m), (1.40)

where εi ∼ NID(0, σ2), xi = (xi0, xi1, . . . , .xiJ)
′ and β = (β0, β1, . . . , βJ)

′. Then yi ∼ N(x′
iβ, σ

2),

giving

f(yi) =
1√
2πσ2

exp

[
−(yi − x′

iβ)
2

2σ2

]
.

In case of the complete data, the likelihood function is

L = Πn
i=1

1√
2πσ2

exp

[
−(yi − x′

iβ)
2

2σ2

]
=

(
1√
2πσ2

)n

exp

[
−
∑n

i=1 y
2
i + 2

∑J
j=0 βj

∑n
i=1 xijyi

2σ2

]
exp

[
−
∑n

i=1(x
′
iβ)

2

2σ2

]
, (1.41)

where the sufficient statistics are
∑n

i=1 y
2
i and

∑n
i=1 xijyi.

Suppose Yi is censored at ci;

Yi =

{
yi if yi ≤ ci i = 1, 2, . . . , n

ci if yi > ci ci > 0 i = n+ 1, n+ 2, . . . , n+m.
(1.42)

We now estimate β and σ using the EM algorithm, where two formulas are used;

Formula 2

E[Y |Y > C] = µ+
ϕ(z)

1− Φ(z)
σ. (1.43)

Formula 3

E[Y 2|Y > C] = σ2 + µ2 + σ(C + µ)

(
ϕ(z)

1− Φ(z)

)
, (1.44)
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where, Y ∼ N(µ, σ2), z = (C − µ)/σ, ϕ(z) = 1√
2π

exp
[
− z2

2

]
and Φ(C) =

∫ C

−∞ ϕ(t)dt. See the

proof for these two formulas in Appendix B.

Let the parameter estimates at the kth iteration be β(k), µ
(k)
i and, σ2(k) where µ

(k)
i = xiβ

(k).

The initial parameters, (β(0), µ
(0)
i , σ2(0)), are set to be;

β(0) = (X ′X)−1X ′y,

µ
(0)
i = 1

n

∑n
i=1 x

′
iβ

(0),

σ2(0) = 1
n

∑n
i=1(yi − µ

(0)
i )2,

using only the uncensored data.

E step

E

[
n+m∑
i=1

xijYi

]
=

n∑
i=1

xijyi +

[
n+m∑
i=n+1

xijE[Yi|Yi ≥ ci,β
(k), σ2(k)]

]

=
n∑

i=1

xijyi +
n+m∑
i=n+1

xij(µ
(k)
i + σ(k)S(z

(k)
i ))　 (1.45)

where z
(k)
i =

ci−µ
(k)
i

σ(k) and S(z
(k)
i ) =

ϕ(z
(k)
i )

1−Φ(z
(k)
i )

The jth element of (X ′y)(k) is obtained in (1.45), using Formula 2.

E

[
n+m∑
i=1

Y 2
i

]
=

n∑
i=1

y2i +
n+m∑
i=n+1

E[y2i |Yi ≥ ci,β
(k), σ2(k)]

=
n∑

i=1

y2i +
n+m∑
i=n+1

(µ
2(k)
i + σ2(k) + σ(k)(ci + µ

(k)
i )S(z

(k)
i )). (1.46)

M Step　
Obtain β(k+1), µ

(k+1)
i , and σ2(k+1), where

β(k+1) = (X ′X)−1(X ′y)(k), µ
(k+1)
i = x′

iβ
(k+1), and

(n+m)σ2(k+1) =
n∑

i=1

(yi − µ
(k)
i )2 +

n+m∑
i=n+1

(E[(Yi − µ
(k)
i )2|Yi ≥ ci,β

(k), σ(k)])

=
n∑

i=1

(yi − µ
(k)
i )2 +

n+m∑
i=n+1

(E[Y 2
i |A]− 2µ

(k)
i E[Yi|A] + µ

2(k)
i )

=
n∑

i=1

(yi − µ
(k)
i )2 +

n+m∑
i=n+1

(σ2(k) + σ2(k)z
(k)
i S(z

(k)
i )) (1.47)

=
n∑

i=1

(yi − µ
(k)
i )2 + σ2(k)

n+m∑
i=n+1

(1 + z
(k)
i S(z

(k)
i )), (1.48)

σ2(k+1) =
1

n+m

[
n∑

i=1

(yi − µ
(k)
i )2 + σ2(k)

n+m∑
i=n+1

(1 + z
(k)
i S(z

(k)
i ))

]
, (1.49)

where A = (Yi ≥ ci,β
(k), σ(k)). The expression (1.47) is obtained using Formula 2 and Formula

3.
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The E step and the M step are iterated until the parameter estimates converge.

Refer to Aitkin (1981) for further details.

1.3.4 Poisson regression model with censored data

Yi ∼ Po(λi)(i = 1, . . . , n, n+ 1, . . . , n+m). Let λi = exp[x′
iβ]. Then the Poisson regression

model is

f(yi) =
exp[− exp[x′

iβ]](exp[x
′
iβ])

yi

yi!
. (1.50)

In case of the complete data, the likelihood function is

f(y) = Πn
i=1f(yi)

= Πn
i=1

exp[− exp[x′
iβ]](exp[x

′
iβ])

yi

yi!

= Πn
i=1(yi!)

−1 exp

[
J∑

j=0

βj

n∑
i=1

xijyi

]
Πn

i=1 exp[− exp[x′
iβ]], (1.51)

(1.52)

where the sufficient statistics is t(y) =
∑n

i=1 xijyi.

Its log likelihood function is

L(β|y,x) = logΠn
i=1

[
exp[− exp[x′

iβ]](exp[x
′
iβ])

yi

yi!

]
(1.53)

=
n∑

i=1

[− exp[x′
iβ] + yix

′
iβ − log(yi!)]. (1.54)

The estimate of the parameter, β, is

β̂ = argmaxL(β|y,x) (1.55)

which is the solution of
∂L
∂β

=
n∑

i=1

(yi − exp[x′
iβ])xi = 0. (1.56)

Suppose Yi is censored at ci. That is,

Yi =

{
yi if yi ≤ ci i = 1, 2, . . . , n

ci if yi > ci ci > 0 i = n+ 1, n+ 2, . . . , n+m.
(1.57)

β and λ are estimated using the EM algorithm and Formula 1,

E[Y |Y > C] = λ

(
1 +

p (C, λ)

P (C, λ)

)
(1.58)
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provided in the subsection 1.2.2. Let the estimates of the parameters be β(k) and λ
(k)
i at the

kth iteration. Note that g(β(k)) is the gradient of the equation(1.54), ∂L
∂β
, while H(β(k)) is its

Hessian, ∂L
∂β∂β′ .

E Step

In case of the complete data,

g(β(k)) =
n∑

i=1

(yi − exp[x′
iβ

(k)])xi. (1.59)

The jth element of gj(β
(k)) is

gj(β
(k)) =

n∑
i=1

[yixij − exp[x′
iβ

(k)]xij]. (1.60)

When the m censored data is included,

E[gj(β
(k))] =

n∑
i=1

yixij +
n+m∑
i=n+1

λ
(k)
i

(
1 +

p(ci, λ
(k)
i )

P (ci, λ
(k)
i )

)
xij −

n+m∑
i=1

exp[x′
iβ

(k)]xij, (1.61)

where λ
(k)
i = exp[x′

iβ
(k)].

The jth row and hth column element of H(β(k)) is

∂2L
∂βj∂βh

= −
n+m∑
i=1

exp[x′
iβ

(k)]xijxih (1.62)

in case of j ̸= h, and

∂2L
∂βj∂βh

= −
n+m∑
i=1

exp[x′
iβ

(k)]x2ij (1.63)

in case of j = h.

M step

Obtain β(k+1) and λ
(k+1)
i , using E[g(β(k))] and H(β(k)).

β(k+1) = β(k) −H−1(β(k))E[g(β(k))] (1.64)

λ
(k+1)
i = exp[x′

iβ
(k+1)]. (1.65)

The E step and the M step are iterated until the parameter estimates converge.
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Appendix A

Formula 1:

E[Y |Y > C] = λ

(
1 +

p(C, λ)

P (C, λ)

)
, (A.1)

where p(y, λ) = e−λλy

y!
, P (C, λ) = 1−

∑C
y=0

e−λλy

y!
.

Proof：

E[Y |Y > C] =
∞∑

y=C+1

yp(y, λ)

P (C, λ)

=
1

P (C, λ)

∞∑
y=C+1

yp(y, λ)

=
1

P (C, λ)

∞∑
y=C+1

e−λλy

(y − 1)!

=
λ

P (C, λ)

∞∑
y=C+1

e−λλy−1

(y − 1)!

=
λ

P (C, λ)

∞∑
w=C

e−λλw

w!

=
λ

P (C, λ)
(P (C, λ) + p(C, λ))

= λ

(
1 +

p(C, λ)

P (C, λ)

)
. (A.2)

□
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Appendix B

Formula 2:

E[Y |Y > C] = µ+
ϕ(z)

1− Φ(z)
σ, (B.1)

where Y ∼ N(µ, σ2).

Proof:

Let Z ∼ N(0.1).

E[Z|Z > C] =
1

1− Φ(C)

∫ ∞

C

z
1√
2π

exp

[
−z

2

2

]
dz

=
1

1− Φ(C)

[
− 1√

2π
exp

[
−z

2

2

]]∞
C

=
1

1− Φ(C)

1√
2π

exp

[
−C

2

2

]
=

ϕ(C)

1− Φ(C)
, (B.2)

where ϕ(z) = 1√
2π

exp
[
− z2

2

]
and Φ(C) =

∫ C

−∞ ϕ(t)dt.

Since Y ∼ N(µ, σ2), Y = µ+ σZ. Let z = C−µ
σ

.

P (Y > C) = P ((Y − µ)/σ > (C − µ)/σ) = P (Z > z)

E[Y |Y > C] = E[µ+ σZ|Z > z]

= µ+
ϕ(z)

1− Φ(z)
σ. (B.3)

□
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Formula 3

E[Y 2|Y > C] = σ2 + µ2 + σ(C + µ)

(
ϕ(z)

1− Φ(z)

)
, (B.4)

where Y ∼ N(µ, σ2).

Proof:

E[Z2|Z > C] =
1

1− Φ(C)

∫ ∞

C

z2
1√
2π

exp

[
−z

2

2

]
dz

=
1

1− Φ(C)

{[
−z 1√

2π
exp

[
−z

2

2

]]∞
C

+

∫ ∞

C

1√
2π

exp

[
−z

2

2

]
dz

}
=

1

1− Φ(C)
(Cϕ(C) + (1− Φ(C))

= 1 +
Cϕ(C)

1− Φ(C)
. (B.5)

Since Y ∼ N(µ, σ2), Y = µ+ σZ. Let z = C−µ
σ

.

E[Y 2|Y > C] = E[(µ+ σZ)2|Z > z]

= E[σ2Z2 + 2µσZ + µ2|Z > z]

= σ2E[Z2|Z > z] + 2µσE[Z|Z > z] + µ2

= σ2

(
1 +

zϕ(z)

1− Φ(z)

)
+ 2µσ

(
ϕ(z)

1− Φ(z)

)
+ µ2

= σ2 + µ2 + σ(zσ + 2µ)

(
ϕ(z)

1− Φ(z)

)
= σ2 + µ2 + σ(C − µ+ 2µ)

(
ϕ(z)

1− Φ(z)

)
= σ2 + µ2 + σ(C + µ)

(
ϕ(z)

1− Φ(z)

)
.

(B.6)

□
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2 A univariate price response function

for hotel demand and determination

of the competitive set

In revenue management, it is very important to set the right prices for the products. Hotels

must know their own price effects and their competitive hotels’ price effects on their demand.

In this chapter, we investigate the price effect on pickups using the price response function.

2.1 Methodology

Details of the data used to estimate the price response function for pickup and the count

data regression models are provided.

2.1.1 Data

Data required is booking data hotels keep daily, including the pickup of the hotel to be

analyzed and the room prices of the subject hotel as well as those of the other hotels seemingly

competitive. Pickup is the incremental demand (number of room reservations) for a certain

interval. In our case, the interval is to be one day. Let us say, bookings for the night of Oct 31

received on Oct 01 is 1. Then its pickup is said to be 1. The data are taken for 31 nights daily

starting on the day, 30 days prior to the specified arrival day.

The data can be summarized as shown in Table 2.1.

reservation date pickup no of days prior rates for subject hotel rates for competitor

Oct 31　 12 0 18000 19000

Oct 30　 6 1 17100 18500

Oct 29　 4 2 16500 18000

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Oct 01 1 30 17000 20000

Table 2.1: Data for Oct 31 stay night
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In our study, the pickup is the bookings for the July 09 stay received from a specified travel

agent who takes reservations over the internet and the room price data is collected from that

agent. All the data is collected from Jun 9 through July 9.

In addition to various room types, hotels offer various products to different market seg-

ments. Therefore, prices are numerous and fluctuate daily. As customers are sensitive to

low prices, seven different prices are considered here; the average of the prices at 5 percentile

or below (0.05QAP), that of the prices at 10 percentile or below (0.1QAP), the 5 percentile

price (0.05QP), the 10 percentile price (0.1QP), the lowest price (LWSTP), the median price

(MEDIANP) and the mean price (MEANP)

Let p1, p2, . . . , pn be n prices and, p(1) ≤ p(2) ≤ · · · ≤ p(n) be order statistics. Then, its π

percentile, Q(π)(0 < π < 1) is defined as;

Q(π) = (1− γ)p(j) + γp(j+1) 0 ≤ γ ≤ 1, (2.1)

where j = ⌊(n− 1)π+1⌋ and γ = (n− 1)π+1− j． p(k) is π(k) percentile where π(k) =
(k−1)
(n−1)

．
πQAP , the average of the prices at and below π percentile is defined as ;

πQAP =

∑n
1 piI(pi ≤ Q(π))∑n
1 I(pi ≤ Q(π))

.

2.1.2 Notation

In this chapter, the arrival day is to be fixed and therefore the suffix for the variables is only

t, without i used in Chapter 1.

Let Yt, t = 0, 1, 2, . . . , 30 be the pickup for the specific arrival day on the day, t days prior to

the arrival day. Let xt = (xt1, xt2, . . . , xtJ) be the independent variable vector. The elements

of the vector are a constant, the room price of the hotel to be analyzed, the competitors’ room

prices on the day, t days prior, and the number of days before arrival denoted by dba. β is the

parameter vector. We consider 3 hotels including the hotel to be analyzed, thus J = 5.

2.1.3 Count regression model

As the pickup values are rather small, the count regression models are applied. One is the

Poisson regression model and the other, the negative binomial regression model, discussed in

the subsection 1.3.2.

The Poisson regression model is defined as;

P (Yt = y) =
e−µtµy

t

y!
, y = 0, 1, 2, . . . (2.2)

where µt is set to be exp(x′
tβ).

The negative binomial regression model is defined as;

P (Yt = y) =
Γ(α−1 + y)

Γ(α−1)Γ(y + 1)

(
α−1

α−1 + λt

)α−1 (
λt

α−1 + λt

)y

α > 0, y = 0, 1, 2, . . . , (2.3)

where λt is set to be exp(x′
tβ).
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2.2 Analysis

2.2.1 Descriptive analysis

The hotel to be analyzed is referred to as Hotel A, and the other hotels are Hotel B and

Hotel C. Hotel A is situated 3.15 km east from Hotel B, and 3.78 km east from Hotel C. Hotel

B and Hotel C are 1.25 km away from each other, close to the busy business area.

The number of rooms provided by Hotel A is close to that of Hotel C, while Hotel B provides

about 150 rooms less than Hotel Ａ and Hotel C. However, the weighted average of room size

of Hotel A is 34.2m2 and similar to that of Hotel B, 37.8m2. The weighted average room size

of Hotel C is 27.6m2 and is much smaller than that of Hotel Ａ and Hotel B.

Figure 2.1 is the scatter plot of the pickups of Hotel A which shows its movement for 31 days

from June 09 through July 09.

Figure 2.2 is the boxplot of the July 09 prices which indicates that Hotel A and Hotel B price

ranges are similar, while Hotel C price range is definitely lower than that of Hotel Ａ.

The seven scatter plots, Figure 2.3 through Figure 2.9, show the movement of seven prices,

0.1QAP, 0.05QAP, 0.1QP, 0.05QP, LWSTP, MEDIANP and MEANP for 31 days from June

09 through July 09. The unit of price is 100 yen. We can see that the prices were very similar

between Hotel Ａ and Hotel B for about 2 weeks from June 9. Then Hotel B began to close

lower prices whereas Hotel Ａ started to reduce prices, that results in larger difference between

the Hotel A price and the Hotel B price. On the other hand, the Hotel C prices, most of the

time, stayed lower than the prices of Hotel Ａ and Hotel B.

In terms of location, Hotel A can be competitive with Hotel B as well as Hotel C. However,

it is very possible that consumers consider Hotel A and Hotel B equivalent based on the fact

that the weighted average of room size and the price range are similar between Hotel A and

Hotel B. Therefore, Hotel A can be price competitive with Hotel B.

●●

●

●

●●

●

●●

●

●

●

●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
5

10
15

20

dba

pi
ck

 u
p

Fig. 2.1: pickups of Hotel A
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Fig. 2.3: 0.1QAP
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Fig. 2.4: 0.05QAP
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Fig. 2.5: 0.1QP
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Fig. 2.6: 0.05QP

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●

0 5 10 15 20 25 30

10
0

15
0

20
0

25
0

dba

pr
ic

e

0 5 10 15 20 25 30

10
0

15
0

20
0

25
0

dba

pr
ic

e

0 5 10 15 20 25 30

10
0

15
0

20
0

25
0

dba

pr
ic

e

● Hotel A
Hotel B
Hotel C

Fig. 2.7: LWSTP
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Fig. 2.8: MEDIANP
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Fig. 2.9: MEANP

2.2.2 Statistical analysis: Count data regression analysis

Both Poisson and negative binomial regression models are estimated with the dependent vari-

able, the pickup of Hotel A and the independent variables, Hotel A price, Hotel B price, Hotel

C price, and dba. Parameters are estimated using seven different prices, 0.1QAP, 0.05QAP,

0.1QP, 0.05QP, LWSTP, MEDIANP and MEANP.

The results are summarized in Table 2.2 and Table 2.3.
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The parameter estimates for the Hotel A price and for the Hotel B price are significant under

the 5% significance level test in both Poisson and negative binomial regression analysis when

0.1QAP, 0.05QAP, 0.05QP and LWSTP are applied and AIC for both models is small. When

0.1QP, MEDIANP and MEANP are applied, many of the parameter estimates of the Hotel A

price, Hotel B price and Hotel C price are insignificant. Therefore, both Poisson and negative

binomial models using 0.1QAP, 0.05QAP, 0.05QP and LWSTP are appropriate for the price

effect analysis. Price parameters explain the price impact on pickup. For example, the price

parameter of Hotel A is -0.09195 when the Poisson regression model is applied, using 0.1QAP.

This implies that 100 yen increase in the Hotel A price results in about 9.2% decline in the

expectation of its pickup, while the Hotel B price increase of 100 yen boosts the expectation of

the pickup by about 3.5% as its coefficient is 0.03539. In case of the negative binomial regression,

the price parameter for Hotel A is -0.092560 and that of Hotel B is 0.034142 when 0.1QAP

is used. Therefore, this also suggests that the expectation of its pickup drops by about 9.3%

when the Hotel A price increases by 100 yen, while the Hotel B price increase of 100 yen raises

the expectation of the pickup by about 3.4% . The parameter of the Hotel A price is negative.

The lower the Hotel A price is, the more its pickup is. On the other hand, the parameter of the

Hotel B price is positive. Pickup increases as the Hotel B price rises. Therefore, estimates of

the price parameters statistically significant are consistent with the price theory. No parameter

estimates of the Hotel C price are significant in any of the regression analysis.

The absolute values of the parameters for the Hotel A price are larger than those for the

Hotel B price. This indicates that the Hotel A own price has a larger impact on their pickup.

Thus, Hotel A is considered price competitive with Hotel B, but there is no evidence that Ho-

tel A is price competitive with Hotel C. Further, no parameter estimates of dba are statistically

significant in any case.
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parameter

constant Hotel Ａ Hotel B Hotel C dba

estimate 8.026 -0.09195** 0.03539*** 0.012 0.050

0.1QAP z value 1.733 -3.056 3.370 0.488 1.159

P value 0.083 0.00224 0.00075 0.625 0.246

residual deviance: 35.853 df: 26 AIC: 112.57

estimate 8.365 -0.067860** 0.029260*** -0.011 0.024

0.05QAP z value 1.868 -2.888 3.377 -0.540 0.663

P value 0.062 0.003881 0.000733 0.589 0.507

residual deviance: 38.730 df: 26 AIC: 115.45

estimate 5.083 -0.053425 0.030182** -0.005 0.031

0.1QP z value 0.956 -1.784 2.885 -0.294 0.68

P value 0.339 0.07436 0.00392 0.769 0.491

residual deviance: 42.905 df: 26 AIC: 119.62

estimate 13.272* -0.090913* 0.031492*** -0.019 0.071

0.05QP z value 2.067 -2.501 3.549 -1.038 1.378

P value 0.039 0.012380 0.000387 0.299 0.168

residual deviance:39.343 df: 26 AIC: 116.06

estimate 2.900 -0.050016** 0.032357*** 0.002 0.009

LWSTP z value 0.694 -3.033 3.411 0.087 0.282

P value 0.488 0.002419 0.000648 0.930 0.778

residual deviance: 37.383 df: 26 AIC: 114.1

estimate 1.510 -0.045175 0.033854* 0.006 -0.025

MEDIANP z value 0.243 -1.942 2.117 0.493 -0.909

P value 0.808 0.0521 0.0342 0.622 -0.909

residual deviance: 41.170 df: 26 AIC: 117.89

estimate 7.610 -0.066640** 0.028144 0.012 -0.010

MEANP z value 1.196 -2.947 1.918 1.317 -0.4105

P value 0.232 0.00321 0.05514 0.188 0.682

residual deviance: 39.114 df: 26 AIC: 115.83

Table 2.2: Poisson Regression

Note:

’*’ denotes ’significant at 5% level’.

’**’ denotes ’significant at 1% level’.

’***’ denotes ’significant at 0.1% level’.
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parameter

constant Hotel Ａ Hotel B Hotel C dba

estimate 8.718539 -0.092560** 0.034142** 0.009887 0.050629

0.1QAP z value 1.747 -2.928 2.995 0.396 1.148

P value 0.08064 0.00341 0.00274 0.69192 0.25081

residual deviance: 32.835 df: 26 AIC:114.46

estimate 10.28577 -0.07643** 0.02823** -0.01313 0.03080

0.05QAP z value 1.908 -2.724 2.648 -0.581 0.764

P value 0.05643 0.00644 0.00811 0.56152 0.44495

residual deviance: 30.264 df: 26 AIC: 116.19

estimate 6.256114 -0.055518 0.025931 -0.004099 0.031476

0.1QP z value 0.921 -1.533 1.875 -0.207 0.631

P value 0.3568 0.1253 0.0607 0.8364 0.5283

residual deviance: 32.384 df: 26 AIC: 120.07

estimate 14.19933 -0.09325* 0.02974** -0.02042 0.07304

0.05QP z value 1.866 -2.222 2.827 -1.011 1.279

P value 0.06204 0.02627 0.00469 0.31215 0.20074

residual deviance:33.102 df:26 AIC: 117.54

estimate 3.763774 -0.053557** 0.030846** 0.001991 0.010348

LWSTP z value 0.804 -2.856 2.743 0.075 0.316

P value 0.42141 0.00429 0.00610 0.94027 0.75212

residual deviance: 30.486 df: 26 AIC: 115.26

estimate 6.90164 -0.06445* 0.02670 0.01176 -0.02224

MEDIANP z value 0.829 -2.131 1.277 0.836 -0.680

P value 0.4069 0.0331 0.2017 0.4032 0.4963

residual deviance: 28.660 df: 26 AIC: 117.15

estimate 9.90837 -0.07203** 0.02229 0.01558 -0.01088

MEANP z value 1.280 -2.723 1.170 1.303 -0.389

P value 0.20050 0.00647 0.24213 0.19271 0.69729

residual deviance: 30.255 df: 26 AIC: 116.37

Table 2.3: Negative Binomial Regression

Note:

’*’ denotes ’significant at 5% level’.

’**’ denotes ’significant at 1% level’.

’***’ denotes ’significant at 0.1% level’.
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2.3 Conclusions

The price response function for pickup is estimated using the Poisson regression model and

the negative binomial regression model. The independent variables are the price of the hotel

analyzed, the cross prices (the prices of the other hotels) and dba. The prices used are 0.1QAP,

0.05QAP, 0.1QP, 0.05QP, LWSTP, MEDIANP and MEANP.

None of the dba parameter estimates is significant. It may possibly result from the fact that

the data was collected only for 31days, a short period.

The price parameter of Hotel A and that of Hotel B whose weighted average of room size

is close to that of Hotel A are significant in case of 0.1QAP, 0.05QAP, 0.05QP and LWSTP.

The Hotel A price parameter is negative while the Hotel B price parameter is positive. Thus

the signs of the parameter estimates that are significant are consistent with the price theory.

However, the Hotel C price parameter estimates are insignificant, whose weighted average of

room size is smaller than that of Hotel A. Competitiveness of hotels can be determined by

significance of the price parameter estimate and their signs.

In this study, it is neither average daily rate nor hotel size but rather the effects of the

hotel’s own price and other hotels’ prices on pickup that determine hotel competitiveness and

therefore, these models reflect the market condition and are appropriate to identify competitive

hotels. The hotels are competitive when the price parameter estimates are significant and have

correct sings, and not competitive, if not. In our empirical study, it is determined that Hotel

A is competitive with Hotel B. On the other hand, Hotel A is not price competitive with Hotel

C.
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3 Selecting the population with the

largest mean for dependent random

variables

3.1 Introduction

The selection problem is the problem of selecting the best populations from the k popula-

tions. There are two basic approaches, one is the indifference zone approach and the other

is the subset selection approach. We consider only the latter in this paper. See, e.g. Gupta

and Panchapakesan (1979) for a comprehensive view of two approaches. Consider k normal

populations with means, µ1, . . . , µk, and a common variance, σ2. We would like to select the

subset of k populations which contains the population with the largest µi with probability at

least equal to P ∗ (k−1 < P ∗ < 1). Note that the size of the subset is random. This approach

was first developed by Gupta (1956, 1965) and later extended to several cases. In this chapter,

after a brief explanation of the subset selection approach for independent random variables, we

extend the method to Gaussian ARMA processes.

3.2 Selection of the normal populations for independent

random variables

In this section, we review the selection for the means of normal populations with independent

random variables based on Gupta (1965).

Suppose there are k normal populations, Π1,Π2, . . . ,Πk with means, µ1, µ2, . . . , µk, respec-

tively and a common variance, σ2. For each i = 1, 2, . . . , k, let {Xi,1, Xi,2, . . . , Xi,n} be in-

dependent random variables from Πi. We assume that {X1,j}nj=1, {X2,j}nj=1, . . . , {Xk,j}nj=1 are

independent. Let M = {(µ1, µ2, . . . , µk) : µi ∈ R, µi ̸= µj for some i ̸= j} be the parameter

space for means. Let µ[1] ≤ µ[2] ≤ · · · ≤ µ[k] be the ordered means for µ1, µ2, . . . , µk. Let X̄(i)

be the sample mean of the sample from the population with µ[i]. We also let

X [1] ≤ X [2] ≤ · · · ≤ X [k]

be the ordered sample means.

Rule R:

Select the ith population, Πi, when

X i ≥ X [k] −Dsν/
√
n, (3.1)
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where D is a constant and ν = k(n − 1) is the degrees of freedom for the unbiased estimates

of σ2, s2ν . The random variable, νs2ν/σ
2, has a χ2(ν) distribution. The constant D is to be

determined to satisfy the probability requirement for selecting the correct subset.

Let CS stand for Correct Selection of the subset that contains the population with the largest

mean. Then,

P (CS|R) = P (X(k) ≥ X [k] −Dsν/
√
n)

= P (X [k] ≤ X(k) +Dsν/
√
n)

= P (X(j) − µ[j] ≤ X(k) − µ[k] + µ[k] − µ[j] +Dsν/
√
n j = 1, 2, . . . , k − 1)

= E[P (X(j) − µ[j] ≤ X(k) − µ[k] + µ[k] − µ[j] +Dsν/
√
n j = 1, 2, . . . , k − 1|X̄(k), sν)]

= E

[
P

(
X(j) − µ[j]

σ/
√
n

≤
X(k) − µ[k]

σ/
√
n

+
µ[k] − µ[j]

σ/
√
n

+D
sν
σ
j = 1, 2, . . . , k − 1

∣∣∣∣∣X(k), sν

)]

= E

[
k−1∏
j=1

Φ

(
X(k) − µ[k]

σ/
√
n

+
√
nδkj +D

sν
σ

)∣∣∣∣∣X(k), sν

]

=

∫ ∞

0

∫ ∞

−∞

k−1∏
j=1

Φ(u+
√
nδkj +Dy)ϕ(u)qν(y) du dy, (3.2)

where qν(y) is the density function of χν/
√
ν and δkj = (µ[k] − µ[j])/σ.

Since δkj > 0 for some j ̸= k,

inf
M
P (CS|R) = inf

M

∫ ∞

0

∫ ∞

−∞

k−1∏
j=1

Φ(u+
√
nδkj +Dy)ϕ(u)qν(y) du dy (3.3)

=

∫ ∞

0

∫ ∞

−∞
Φk−1(u+Dy)ϕ(u)qν(y) du dy. (3.4)

The constant D is determined by;∫ ∞

0

∫ ∞

−∞
Φk−1(u+Dy)ϕ(u)qν(y) du dy = P ∗,

where P ∗ is the prespecified probability. Gupta and Sobel (1957) provides the D values for the

selected k, n, P ∗.

3.3 Selection of the populations: ARMA processes

For each i = 1, 2 . . . , k, let {Xi,t, t = 1, 2, . . . , n} be a sample from a Gaussian ARMA process

with the mean µi. Let Yi,t = Xi,t − µi. Then {Yi,t} satisfies

Yi,t = ϕ1Yi,t−1 + · · ·+ ϕpYi,t−p + Zi,t + θ1Zi,t−1 + · · ·+ θqZi,t−q, t = 0,±1,±2, . . . , (3.5)
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where {Zi,t}∞t=−∞ is a sequence of independent normal random variables with the mean 0 and

the variance σ2
ε . Let β = (ϕ1, . . . , ϕp, θ1, . . . , θq)

′, and ϕ = (ϕ1, . . . , ϕp)
′, θ = (θ1, . . . , θq)

′. Define

polynomials ϕ(·) and θ(·) by

ϕ(z) = 1− ϕ1z − · · · − ϕpz
p

and

θ(z) = 1 + θ1z + · · ·+ θqz
q.

Then model (3.5) can be written by

ϕ(B)Yi,t = θ(B)Zi,t, t = 0,±1,±2, . . . , (3.6)

where B is the backward shift operator defined by

BjXt = Xt−j, j = 0,±1,±2, . . . (3.7)

We assume that ϕ(·) and θ(·) have no common zeroes and that ϕ(z) ̸= 0 and θ(z) ̸= 0 for all

z ∈ C such that |z| ≤ 1. Under these assumptions ARMA process (3.5) is causal and invertible

(see Brockwell and Davis, 1991). From the causality of the model, it can be written as

Yi,t = Xi,t − µi =
∞∑
j=0

ψjZi,t−j, t = 0,±1,±2, . . . , (3.8)

where {ψj} is given by the relation

ψ(z) =
∞∑
j=0

ψjz
j = θ(z)/ϕ(z), |z| ≤ 1. (3.9)

The autocovariance function for {Yi,t} is given by

γ(k) = σ2
ε

∞∑
j=0

ψjψj+|k| (3.10)

for each k ∈ Z.
Note that we assume for different i the parameters for ARMA procceses are the same except

the mean µi. Thus the autocovariances are the same for different i. We also assume that k

stationary processes are independent.

Let M = {(µ1, . . . , µk) : µi ∈ R, µi ̸= µj for some i ̸= j} be the parameter space for the

means. Let

µ[1] ≤ µ[2] ≤ · · · ≤ µ[k]

be the ordered means for µ1, µ2, . . . , µk. Let X i be the sample mean of {Xi,t, t = 1, 2, . . . , n}.
Let X(i) denote the sample mean of the sample that has the mean µ[i]. We also let

X [1] ≤ X [2] ≤ · · · ≤ X [k]
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be the ordered sample means.

The purpose of the current paper is to investigate a procedure of selecting a subset of in-

dexes that contains the popultation with the largest mean with the prespescified probability.

This methodology was first developed by Gupta (1963) for independent sequences of random

variables. We investigate a method for dependent sequences of random variables.

The variance of
√
nX i is given by

σ2
n =

n−1∑
s=−(n−1)

(
1− |s|

n

)
γ(s). (3.11)

It is known that if
∑∞

s=0 |γ(s)| <∞,

σ2
n → σ2

∞ :=
∞∑

s=−∞

γ(s) as n→ ∞.

Since the process {Xit}t≥1 is Gaussian,

√
n(X i − µi)

σn
∼ N(0, 1).

3.3.1 Subsampling estimator

In order to estimate σ2
n, we use the subsampling methodology developed by Carlstein (1986),

Politis and Romano (1993) among others. Let bn be such that bn → ∞ and bn/n → 0 as

n→ ∞. We call bn the subsample size. The subsampling estimator for σ2
n based on the sample

from j-th population is defined by

σ̂2
j,b,n = (n− b+ 1)−1

n−b+1∑
i=1

(
1√
b

i+b−1∑
t=i

Xj,t −
√
bX̄j

)2

. (3.12)

The subsampling estimator is known to be consistent, i.e.

σ̂2
j,b,n

p→ σ2
∞ as n→ ∞

for weakly dependent stationary processes under mild conditions. (Refer to Carlstein (1986)

and Fukuchi (1999).) The subsampling estimator for σ2
n is defined by

σ̂2
b,n =

1

k

k∑
j=1

σ̂2
j,b,n. (3.13)

In the following, we write σ̂2
n = σ̂2

b,n for short.
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3.3.2 Selection rule

Consider the selection rule R definded as follows:

R: Select the ith population if and only if

X i ≥ X [k] −
Dnσ̂n√

n
,

where Dn is a positive constant to be determined.

Let CS denote the correct selection.

P (CS|R) =P
(
X(k) ≥ X [k] −

Dnσ̂n√
n

)
=P

(
X [k] ≤ X(k) +

Dnσ̂n√
n

)
=P

(
X(j) ≤ X(k) +

Dnσ̂n√
n
, j = 1, 2, . . . , k − 1

)
=P

(
X(j) − µ[j] + µ[j] ≤ X(k) − µ[k] + µ[k] +

Dnσ̂n√
n
, j = 1, . . . , k − 1

)
=P

(
X(j) − µ[j] ≤ X(k) − µ[k] + µ[k] − µ[j] +

Dnσ̂n√
n
, j = 1, . . . , k − 1

)
=P

(
X(j) − µ[j]

σn/
√
n

≤
X(k) − µ[k]

σn/
√
n

+
µ[k] − µ[j]

σn/
√
n

+
Dnσ̂n
σn

, j = 1, . . . , k − 1

)

=P

(
X(j) − µ[j]

σn/
√
n

−
X(k) − µ[k]

σn/
√
n

− Dnσ̂n
σn

≤
µ[k] − µ[j]

σn/
√
n
, j = 1, . . . , k − 1

)
. (3.14)

Since

(
X1,1 − µ1

σε
,
X1,2 − µ1

σε
, . . . ,

Xk,n − µk

σε

)′

is distributed as the kn-dimensional normal

distribution with mean vector 0 and the variance-covariances matrix diag{Λ,Λ, . . . ,Λ}, where
Λ = {σ−2

ε γ(|i− j|)}ni,j=1 and γ(·) is given by (3.10).

Thus the distribution of

X(j) − µ[j]

σn/
√
n

−
X(k) − µ[k]

σn/
√
n

− Dnσ̂n
σn

(3.15)

depends on parameters β but not on (µ1, µ2, . . . , µk)
′ and σ2

ε . See Appendix C for further

details. Since µi ̸= µj for some i ̸= j, the infimum of (3.14) over the set M is given by

inf
M
P (CS|R) =P

(
X(j) − µ[j]

σn/
√
n

−
X(k) − µ[k]

σn/
√
n

− Dnσ̂n
σn

≤ 0, j = 1, . . . , k − 1

)

=P

(
X(j) − µ[j]

σ̂n/
√
n

−
X(k) − µ[k]

σ̂n/
√
n

≤ Dn, j = 1, . . . , k − 1

)
.

We would like to find the value Dn that satisfies

P

(
X(j) − µ[j]

σ̂n/
√
n

−
X(k) − µ[k]

σ̂n/
√
n

≤ Dn, j = 1, . . . , k − 1

)
= P ∗, (3.16)
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where P ∗ is the prespecified probability. It is easy to see that Dn is the P ∗-th quantile of the

random variable

Yn =

√
n
(
X [k−1] −Xk

)
σ̂n

, (3.17)

where X1, . . . , Xk−1, Xk are sample means of k independent samples of the sample size n, each

following a Gaussian ARMA processes with the mean 0

Xi,t = ϕ1Xi,t−1 + · · ·+ ϕpXi,t−p + Zi,t + θ1Zi,t−1 + · · ·+ θqZi,t−q, t = 0± 1,±2, . . .

and X [k−1] denotes max1≤i≤k−1X i.

3.4 Estimation of Dn

Since the quantile Dn depends on unknown parameters (ϕ, θ), it needs to be estimated.

The first method to obtain approximate value of Dn is the one based on the asymptotic

distribution of Yn.

Since σn → σ∞ > 0, we have σ̂n/σn
p→ 1 and thus

Yn =

√
n
(
X [k−1] −Xk

)
σ̂n

=

 max
1≤i≤k−1

X i

σn/
√
n

− Xk

σn/
√
n

× σn
σ̂n

d→ max
1≤i≤k−1

Ui − U

= max
1≤i≤k−1

(Ui − U),

where U1, . . . , Uk−1, U are independently distributed as the standard normal distribution. The

ramdom vector (U1−U,U2−U, . . . , Uk−1−U)′ is distributed as the (k−1)-dimensional multivari-

ate normal distribution with the common variance 2 and the common covariance 1. P ∗-quantile

of max1≤i≤k−1(Ui − U) is denoted by D̃n(P
∗).

The P ∗-quantile of max
1≤i≤k−1

Zi, where (Z1, . . . , Zk−1)
′ are (k − 1)-dimensional normal random

variables with the common correlation is given in Gupta, Nagel and Panchapakesan (1973) as

Table I for k = 2(1)11, 13(2)51 and P ∗ = .75, .90, .95, .975 and .99.

The second method is estimatingDn by plug-in method. The distribution of
√
n
(
X [k−1] −Xk

)
/σ̂n

depends on the parameter (ϕ, θ). Therefore Dn depends on these parameters and we write

Dn(P
∗) = Dn(P

∗, ϕ, θ). Thus Dn(P
∗, ϕ, θ) is estimated by D̂n = Dn(P

∗, ϕ̂, θ̂) where (ϕ̂, θ̂) is

the MLE of (ϕ, θ).
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3.4.1 Stationary Gaussian ARMA resampling

The estimate Dn(P
∗, ϕ̂, θ̂) can be obtained by using the Monte Calro simulation as follows.

1. Given the data {Xi,t}nt=1, obtain mean adjusted data

X ′
i,t = Xi,t − X̄i. (3.18)

2. From {X ′
i,t}nt=1 obtain the MLE (ϕ̂i, θ̂i) = (ϕ̂1,i, . . . , ϕ̂p,i, θ̂1,i, . . . , θ̂q,i).

Let β̂n = (ϕ̂n, θ̂n) be the average of (ϕ̂i, θ̂i), that is

β̂n = (ϕ̂n, θ̂n) =

(
k−1

k∑
i=1

ϕ̂i, k−1

k∑
i=1

θ̂i

)
. (3.19)

Estimation of Dn.

3. Generate k independent samples of size n from ARMA(p, q) process with the parameter

β̂n that is,

X∗
i,t = ϕ̂1X

∗
i,t−1 + · · ·+ ϕ̂pX

∗
i,t−p + Z∗

i,t + θ̂1Z
∗
i,t−1 + · · ·+ θ̂qZ

∗
i,t−q, t = 0,±1,±2, . . . ,

(3.20)

where {Z∗
i,t} is a sequence of independent standard normal random variables.

4. Obtain subsampling estimator, σ̂2∗
n , of σ2

n from the pseudo sample generated by (3.20).

5. Obtain Y ∗
n by

Y ∗
n =

√
nX̄∗

[k−1] − X̄∗
k

σ̂∗
n

, (3.21)

where σ̂∗
n =

√
σ̂2∗
n

6. Repeat above procedures NR times. (NR=Number of Replications)

7. Obtain D̂n(P
∗) by computing P ∗-quantile of Y ∗

n .

We call the procedure defined by (1)-(4) the stationary Gaussian ARMA resampling.

The selection rule we propose is the rule R with D̂n:

Selection rule with D̂n. R(D̂n): Select the ith population if and only if

X i ≥ X [k] −
D̂nσ̂n√

n
.
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3.5 Some results on the stationary Gaussian ARMA re-

sampling for the subsampling estimator

In this section, the consistency of D̂n is proved. For that purpose, some results on the

stationary Gaussian ARMA resampling for the subsampling estimator are given first.

Random variables {Xi} are said to be uniformly integrable (u.i.) if there exists no such that

limA→∞ supn≥noE(|Xn|I(|Xn| ≥ A)) = 0.

Let {Xi} be a strong-mixing stochastic process. Let X i
n = (Xi+1, . . . , Xi+n)

′ and let sin =

sn(X
i
n) be a statistic computed from X i

n. It is often of interest to obtain an estimator of

the variance of a statistic s0n = sn(X
0
n). Carlstein(1986) developed the subsampling variance

estimator which is consistent under some weak conditions.

Let tin = n1/2 {sin − E(s0n)}. Suppose that

E
(
t0n
)2

= nV(s0n) → σ2 ∈ (0,∞), as n→ ∞.

Subsampling estimator for σ2 is defined by

σ̂2
n = N−1

n bn

Nn−1∑
i=0

(sib − s̄n)
2,

where s̄n = N−1
n

∑Nn−1
i=0 sib. In terms of tib, σ̂

2
n can be written as

σ̂2
n = N−1

n

Nn−1∑
i=0

(tib − t̄n)
2 = N−1

n

Nn−1∑
i=0

(
tib
)2 − (t̄n)

2 ,

where t̄n = N−1
n

∑Nn−1
i=0 tib.

Carlstein (1986) proved that the average of a statistic computed from nonoverelapping sub-

samples converges in L2 to the limit of its expected value. This result was proved for the

overlapping case by Fukuchi (1999). Let (Ω,F ,P) be the probability space on which random

variables {Xi} are defined. Let Nn = n − bn + 1 be the number of overlapping subsamples of

size bn in (X1, X2, . . . , Xn). Define

f̄n = N−1
n

Nn−1∑
i=0

f i
bn .

The following is the result for the overlapping case.

Theorem 1 Let {Xi} be strong-mixing and let fn(X
i
n) = f i

n be a statistic. Let {bn : n ≥ 1} be

such that bn → ∞ and bn/n→ 0; If

lim
n→∞

E(f 0
n) = ψ ∈ R

and

{
(
f 0
n

)2} are u.i.,

then

f̄n
L2

→ ψ as n→ ∞.
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Proof: See Fukuchi (1999).□

The next result is L2-consistency of the overlapping subsampling estimator σ̂2
n.

Theorem 2 Let {Xi} be strong-mixing. If

{
(
t0n
)4} are u.i.,

then

σ̂2
n

L2

→ σ2 as n→ ∞.

Proof: The proof is the same as that of Theorem 3 in Carlstein (1986). □

Let C be the causal and invertible region of β, that is,

C = {β ∈ Rp+q : ϕ(z)θ(z) ̸= 0, for |z| ≤ 1, ϕp ̸= 0, θq ̸= 0, and ϕ(·), θ(·) have no common zeroes }.

Note that thte set C is bounded and open in Rp+q.

Theorem 3 states that if {Xi} is a stationary Gaussian ARMA process, the L2 convergence

of σ̂2
n is shown to be uniform in a neighborhood of ARMA parameter β ∈ C.

Theorem 3 Let {Xi} be a stationary Gaussian ARMA process. Let {bn : n ≥ 1} be such that

bn → ∞ and bn/n→ 0. Let β0 be a vector such that β0 ∈ C.

Assume the following.

Assumption 1: {(t0n)
4} are u.i..

Assumption 2: There exists δ > 0 such that

(i) sup
β∈Oδ(β0)

∣∣Eβ(t
0
n)

2 − σ2(β)
∣∣→ 0,

(ii) sup
β∈Oδ(β0)

Vβ

(
N−1

n

Nn−1∑
i=0

(tib)
2

)
→ 0,

(iii) sup
β∈Oδ(β0)

Eβ(t̄n)
4 → 0.

where Oδ(β0) is the δ-ball centered at β0 and Oδ(β0) is its closure. Then

sup
β∈Oδ(β0)

Eβ

(
σ̂2
n − σ2(β)

)2 → 0 as n→ ∞.

Proof:

Eβ

(
σ̂2
n − σ2(β)

)2
= Eβ

(
N−1

n

Nn−1∑
i=0

(tib)
2 − σ2(β)− (t̄n)

2

)2

≤ 2

Eβ

(
N−1

n

Nn−1∑
i=0

(tib)
2 − σ2(β)

)2

+ Eβ(t̄n)
4


= 2

[
Vβ

(
N−1

n

Nn−1∑
i=0

(tib)
2

)
+ {Eβ(t

0
b)

2 − σ2(β)}2 + Eβ(t̄n)
4

]
.
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Taking the supremum over the set Oδ(β0) of the both sides of the above inequality completes

the proof. □

Theorem 4 is a stationary Gaussian ARMA resampling version of Theorem 2.

Theorem 4 Let {Xi} be a stationary Gaussian ARMA process with the parameter β0 ∈ C and

let β̂n be the maximum likelihood estimator of β0. Let {bn : n ≥ 1} be such that bn → ∞ and

bn/n→ 0.

Then under the assumptions 1 and 2 of Theorem 3 and the stationary Gaussian ARMA

resampling, for almost every ω ∈ Ω,

σ̂2
n(ω)

L2

→ σ2(β0) as n→ ∞.

Proof: Since β̂n → β0 with probability 1, there exists Ω̃ ⊂ Ω such that P (Ω̃) = 1 and

β̂n(ω) → β0 for all ω ∈ Ω̃.

Let δ > 0 be such that Oδ(β0) ⊂ C. For any ω ∈ Ω̃, there exists n0(ω) ≥ 1 such that

|β̂n(ω)− β0| < δ for any n ≥ n0(ω). For this δ and ω

Eβ̂n(ω)

[(
σ̂2
n(ω)− σ2(β0)

)2] ≤ sup
β∈Oδ(β0)

Eβ

[(
σ̂2
n(β)− σ2(β)

)2]→ 0

from Theorem 3. □

For the case of s0n = sn(X
0
n) = X̄n, we will show that Assumption 2 of Theorem 3 holds for the

stationary Gaussian AR(p) process. Let C1 be the causal region of autoregressive parameters

ϕ, i.e.,

C1 = {ϕ ∈ Rp : ϕ(z) ̸= 0, for |z| ≤ 1, ϕp ̸= 0}.

Suppose that {Xi} follows the AR(p) procsess Xi = ϕ1Xi−1+· · ·+ϕpXi−p+εi i = 0,±1,±2, . . .,

where ϕ ∈ C1 and {εi} is a sequence of independently and normally distributed random variables

with the mean zero and the variance σ2
ε . Let ξi, i = 1, . . . , k be distinct zeroes of the polynomial

ϕ(z) and ri, i = 1, . . . , k be their respective multiplicities.

Assumption 2 (i)

Then autocovariance function of the process {Xi} is given by

γs =
k∑

i=1

ri∑
j=0

cijs
jξ−s

i , s ≥ 0, (3.22)

where the constants cij are uniquely determined by the equations

γk − ϕ1γk−1 − · · · − ϕpγk−p = σ2
ε , 0 ≤ k ≤ p, (3.23)

(Brockwell and Davis, 1991, p. 93). After replacing γ0, γ1 . . . , γp in (3.23) by (3.22), constants

cij’s are obtained by solving equations (3.23). Therefore for each i = 1, . . . , k and j = 1, . . . , ri,
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cij is a continuous function of ϕ. The zeroes ξi are also continuous functions of ϕ. Let ϕ0 ∈ C1

and δ > 0 be such that Oδ(ϕ0) ⊂ C1. Then it follows that for i = 1, . . . , k and j = 1, . . . , ri,

sup
ϕ∈Oδ(ϕ0)

|ξi(ϕ)| <∞,

sup
ϕ∈Oδ(ϕ0)

|cij(ϕ)| <∞.

We have

∣∣E(t0n)2 − σ2(ϕ)
∣∣ = ∣∣∣∣∣

n∑
s=−n

(
1− |s|

n

)
γs −

∞∑
s=−∞

γs

∣∣∣∣∣
≤

n∑
s=−n

|s||γs|+ 2

∣∣∣∣∣
∞∑

s=n+1

γs

∣∣∣∣∣ . (3.24)

There exists ϕ̃ ∈ Oδ(ϕ0) such that

sup
ϕ∈Oδ(ϕ0)

|ξi(ϕ)| =
∣∣∣ξi(ϕ̃)∣∣∣ .

It follows that

sup
ϕ∈Oδ(ϕ0)

1

n

∣∣∣∣∣
n∑

s=−n

|s|jξi(ϕ)−s

∣∣∣∣∣ ≤ 1

n

n∑
s=−n

|s|j sup
ϕ∈Oδ(ϕ0)

|ξi(ϕ)|−s

=
1

n

n∑
s=−n

|s|j
∣∣∣ξi(ϕ̃)∣∣∣−s

→ 0.

Thus

sup
ϕ∈Oδ(ϕ0)

∣∣∣∣∣
n∑

s=−n

|s|γs(ϕ)

∣∣∣∣∣→ 0.

Similarly it follows that

sup
ϕ∈Oδ(ϕ0)

∣∣∣∣∣
∞∑

s=n+1

γs(ϕ)

∣∣∣∣∣→ 0.

Assumption 2 (ii)

Let Yi = (ti−1
b )2 then N−1

n

∑Nn−1
i=0 (tib)

2 = N−1
n

∑Nn

i=1 Yi = ȲNn . Thus it is enough to show that

Vϕ(ȲNn) converges to zero uniformly over the set Oδ(ϕ0). Let γY (s) = Cov(Y1, Y1+s). Then

γY (s) = E(Y1 − σ2
b )(Y1+s − σ2

b )

= E(t0b)
2(tsb)

2 − σ4
b

= 2{Cov(t0b , tsb)}2.

The last equality holds since (t0b , t
s
b) is distributed as a multivariate normal distribution.
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Since the process {Xi} is causal, it has the MA(∞) representation

Xi =
∞∑
k=0

ψkεi−k,

where

ψk =
k∑

i=1

ri−1∑
j=0

αijk
jξ−k

i , k ≥ 0. (3.25)

The constants αij are uniquely determined from equations

ψ0 = 1, (3.26)

ψk − ϕ1ψk−1 − · · · − ϕkψ0 = 0, 1 ≤ k ≤ p, (3.27)

(Brockwell and Davis, 1991, p. 92). For each i, j, αij is a continuous function of ϕ in C1 and

thus

sup
ϕ∈Oδ(ϕ0)

|αij(ϕ)| <∞.

We will show that Assumption 2(ii) and (iii) only in the case when the polynomial ϕ(z) has

the zero ξ of multiplicity p in order to avoid a notational complication. Then

ψk =

p−1∑
j=0

αjk
jξ−k, k ≥ 0. (3.28)

The proofs for other cases are similar.

The moving sum
∑b

j=1Xi+j has MA(∞) representation

b∑
j=1

Xi+j =
∞∑
j=0

φjεi+b−j,

where

φj =

{
1 + ψ1 + · · ·+ ψj =

∑∞
k=0 ψk − aj, 0 ≤ j ≤ b− 1,

ψj−b+1 + ψj−b+2 + · · ·+ ψj, b ≤ j,
(3.29)

where aj =
∑∞

k=j+1 ψk. Let

K =

p−1∑
i=0

|αi|,

f(ξ, b) =
b∑

i=1

ip−1ξ−(i−1), f(ξ,∞) =
∞∑
i=1

ip−1ξ−(i−1).
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Then we have

|ψi + ψi+1 + · · ·+ ψi+b−1| ≤ Kf(ξ, b)ip−1ξ−i,
∞∑
i=1

(ψi + ψi+1 + · · ·+ ψi+b−1)
2 ≤ K2f(ξ, b)2

∞∑
i=1

i2(p−1)ξ−2i

≤ K2f(ξ,∞)2
∞∑
i=1

i2(p−1)ξ−2i. (3.30)

The variance and autocovariance of
∑b

i=1Xi+j is given by

σ−2
ε V(Xi+j) =

∞∑
j=0

φ2
j = b

(
∞∑
k=0

ψk

)2

+ A(b, ξ) + B(b, ξ),

where

A(b, ξ) = −2

(
∞∑
k=0

ψk

)
b−1∑
j=0

aj +
b−1∑
j=0

a2j ,

B(b, ξ) =
∞∑
i=1

(ψi + ψi+1 + · · ·+ ψi+b−1)
2 .

For 1 ≤ s ≤ b− 1,

σ−2
ε Cov(Xi+j, Xi+s+j) =

∞∑
j=0

φjφj+s

=
b−s−1∑
j=0

φjφj+s +
b−1∑

j=b−s

φjφj+s +
∞∑
j=b

φjφj+s

= (b− s)

(
∞∑
k=0

ψk

)2

+ C(b, s, ξ) +D(b, s, ξ) + E(b, s, ξ),

where

C(b, s, ξ) =
b−s−1∑
j=0

ajaj+s −

(
∞∑
k=0

ψk

)
b−s−1∑
j=0

(aj + aj+s),

D(b, s, ξ) =

(
∞∑
k=0

ψk

)
s∑

i=1

(ψi + ψi+1 + · · ·+ ψi+b−1)−
s∑

i=1

ab−s−1+i (ψi + ψi+1 + · · ·+ ψi+b−1) ,

E(b, s, ξ) =
∞∑
i=1

(ψi + ψi+1 + · · ·+ ψi+b−1) (ψi+s + ψi+s+1 + · · ·+ ψi+s+b−1) .

For b ≤ s,

σ−2
ε Cov(Xi+j, Xi+s+j) =

b−1∑
j=0

φjφj+s +
∞∑
j=b

φjφj+s

= F (b, s, ξ) + E(b, s, ξ),
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where

F (b, s, ξ) =

(
∞∑
k=0

ψk

)
b−1∑
j=0

(ψj+s−b+1 + · · ·+ ψj+s)−
b−1∑
j=0

aj (ψj+s−b+1 + · · ·+ ψj+s) .

Thus it follows that

σ−2
ε Cov(t0b , t

s
b) =



(
∞∑
k=0

ψk

)2

+
1

b
{A(b, ξ) +B(b, ξ)}, s = 0,

(
1− s

b

)( ∞∑
k=0

ψk

)2

+
1

b
{C(b, s, ξ) +D(b, s, ξ) + E(b, s, ξ)}, 1 ≤ s ≤ b− 1,

1

b
{F (b, s, ξ) + E(b, s, ξ)}, b ≤ s.

(3.31)

Since γY,b = 2 {Cov(t0b , tsb)}
2
,

σ−4
ε γY,b =

2

(
∞∑
k=0

ψk

)4

+
1

b

(
∞∑
k=0

ψk

)2

{A(b, ξ) +B(b, ξ)}+ 2

b2
{A(b, ξ) +B(b, ξ)}2, s = 0,

2
(
1− s

b

)2( ∞∑
k=0

ψk

)4

+
4

b

(
1− s

b

)( ∞∑
k=0

ψk

)2

{C(b, s, ξ) +D(b, s, ξ) + E(b, s, ξ)}

+
4

b2
{C(b, s, ξ) +D(b, s, ξ) + E(b, s, ξ)}2, 1 ≤ s ≤ b− 1,

2

b2
{F (b, s, ξ) + E(b, s, ξ)}2, b ≤ s.

We have

V(ȲN) = N−1

b−1∑
s=−(b−1)

(
1− |s|

N

)
γY (s) +N−1

∑
b≤|s|≤N

(
1− |s|

N

)
γY (s) = V1,n + V2,n(say).

Then

|V1,n| ≤ N−1

b−1∑
s=−(b−1)

|γY (s)|

= N−1V (Y1) +N−1

b−1∑
s=1

|γY (s)|

≤ N−1(4b− 2)

(
∞∑
k=0

ψk

)4

+N−1R1(b, ξ) +N−12
b−1∑
s=1

R2(b, s, ξ),
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where

R1(b, ξ) = 2

(
∞∑
k=0

ψk

)4

+
1

b

(
∞∑
k=0

ψk

)2

{A(b, ξ) +B(b, ξ)}+ 2

b2
{A(b, ξ) +B(b, ξ)}2 ,

R2(b, s, ξ) = 2
(
1− s

b

)2( ∞∑
k=0

ψk

)4

+
4

b

(
1− s

b

)( ∞∑
k=0

ψk

)2

{C(b, s, ξ) +D(b, s, ξ) + E(b, s, ξ)}

+
4

b2
{C(b, s, ξ) +D(b, s, ξ) + E(b, s, ξ)}2 .

From the relation (3.9), we see that

∞∑
k=0

ψk = {ϕ(1)}−1. (3.32)

Thus

sup
ϕ∈Oδ(ϕ0)

(
∞∑
k=0

ψk

)4

= sup
ϕ∈Oδ(ϕ0)

{ϕ(1)}−4 <∞. (3.33)

Since ∣∣∣∣∣
b−1∑
j=0

aj

∣∣∣∣∣ ≤ K

∣∣∣∣∣
b−1∑
j=0

∞∑
k=j+1

kp−1ξ−k

∣∣∣∣∣ ,
it follows that

sup
ϕ∈Oδ(ϕ0)

∣∣∣∣∣
b−1∑
j=0

aj

∣∣∣∣∣ ≤ sup
ϕ∈Oδ(ϕ0)

K(ϕ)×
b−1∑
j=0

sup
ϕ∈Oδ(ϕ0)

∣∣∣∣∣
∞∑

k=j+1

kp−1ξ(ϕ)−k

∣∣∣∣∣ <∞.

Thus supϕ∈Oδ(ϕ0)
|A(b, ξ)| < ∞. From the inequality (3.30), we have supϕ∈Oδ(ϕ0)

|B(b, ξ)| < ∞.

Thus

N−1 sup
ϕ∈Oδ(ϕ0)

|R1(b, ξ)| → 0. (3.34)

∣∣∣∣∣b−1

b−1∑
s=1

b−s−1∑
j=0

aj

∣∣∣∣∣ ≤ Kb−1

b−1∑
s=1

b−s−1∑
j=0

∞∑
k=j+1

kp−1ξ−k

≤ K

∞∑
j=0

∞∑
k=j+1

kp−1ξ−k

By the similar arguments, we can prove that

N−1 sup
ϕ∈Oδ(ϕ0)

∣∣∣∣∣
b−1∑
s=1

R2(b, s, ξ)

∣∣∣∣∣→ 0, (3.35)
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and thus supϕ∈Oδ(ϕ0)
|V1,n| → 0.

For V2,n,

|V2,n| ≤ N−1
∑

b≤|s|≤N

|γY (s)|

≤ 8b−2N−1

N∑
s=b

{F (b, s, ξ)2 + E(b, s, ξ)2}.

We have

F (b, s, ξ)2 ≤ 2


(

∞∑
k=0

ψk

)2( b−1∑
j=0

(ψj+s−b+1 + · · ·+ ψj+s)

)2

+

(
b−1∑
j=0

aj (ψj+s−b+1 + · · ·+ ψj+s)

)2
 = F 2

1 (b, s, ξ) + F 2
2 (b, s, ξ)(say).

Since

b−2N−1

N∑
s=b

F 2
1 (b, s, ξ)

2 ≤

(
∞∑
k=0

ψk

)2

K2f(ξ, b)2b−2N−1

N∑
s=b

(
s∑

i=s−b+1

ip−1ξ−i

)2

≤

(
∞∑
k=0

ψk

)2

K2f(ξ, b)2b−2N−1

N∑
s=1

(
s∑

i=1

ip−1ξ−i

)2

,

it follows supϕ∈Oδ(ϕ0)
b−2N−1

∑N
s=b F

2
1 (b, s, ξ)

2 → 0. Similarly supϕ∈Oδ(ϕ0)
b−2N−1

∑N
s=b F

2
2 (b, s, ξ)

2 →
0. Thus supϕ∈Oδ(ϕ0)

|V2,n| → 0.

Assumption 2 (iii)

In order to show Assumption 2 (iii) holds, we write E(t̄n)
4 as

E(t̄n)
4 = N−4

n 3

E

(
Nn−1∑
i=0

tib

)2


2

= N−2
n 3

E

(
1√
Nn

Nn−1∑
i=0

tib

)2


2

.

We have

E

(
1√
Nn

Nn−1∑
i=0

tib

)2

=
Nn∑

s=−Nn

(
1− |s|

Nn

)
Cov(t0b , t

s
b)

=
b−1∑

s=−(b−1)

(
1− |s|

Nn

)
Cov(t0b , t

s
b) +

∑
b≤|s|≤Nn

(
1− |s|

Nn

)
Cov(t0b , t

s
b)

= V3,n + V4,n (say).
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Thus

E(t̄n)
4 ≤ 6N−2

n

{
(V3,n)

2 + (V4,n)
2
}
. (3.36)

By the same argument of showing (3.34) and (3.35), it is shown that N−1 supϕ∈Oδ(ϕ0)
{(V3,n)} →

0 and N−1 supϕ∈Oδ(ϕ0)
{(V4,n)} → 0, which completes the proof.

Theorem 5 states that if {Xi} is a causal Gaussian AR(p) process D̂n − Dn converges to

zero with probability 1. Let G be the distribution function of max1≤i≤k−1(Ui − U), where

U1, . . . , Uk−1, U are independently distributed as standard normal distribution. Given a sample

(Xi,1, Xi,2, . . . , Xi,n), i = 1, . . . , k, let (X∗
i,1, X

∗
i,2, . . . , X

∗
i,n), i = 1, . . . , k be the sample generated

by the stationary Gaussian ARMA resampling and Y ∗
n be defined by

Y ∗
n =

√
n
(
X

∗
[k−1] −X

∗
k

)
σ̂∗
n

.

Define

Gn(y) := P
(
Y ∗
n ≤ y | ϕ̂n

)
,

where ϕ̂n is the maximum likelihood estimator of ϕ. Note that for each y ∈ R, Gn(y) is a

random variable.

Theorem 5 Let {Xi} be a causal Gaussian AR(p) process with the parameter ϕ0. Then for

any y ∈ R,

Gn(y) → G(y) as n→ ∞ with probability 1

and for any y ∈ (0, 1),

G−1
n (y) → G−1(y) as n→ ∞. with probability 1 (3.37)

Proof: Let

σ2∗
n = V

(√
nX̄∗|X1, . . . , Xn

)
=

n∑
s=−n

(
1− |s|

n

)
γs(ϕ̂n).

There exists Ω̃ ⊂ Ω such that P (Ω̃) = 1 and ϕ̂n(ω) → ϕ0 for all ω ∈ Ω̃. For any ω ∈ Ω̃ and

δ > 0, there exists n0(ω) such that ϕ̂n ∈ Oδ(ϕ0) for n ≥ n0. Since

σ2∗
n − σ2

n =
n∑

s=−n

(
1− |s|

n

){
γs(ϕ̂n)− γs(ϕ0)

}
,
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it follows that for any ω ∈ Ω̃, δ > 0 and n ≥ n0(ω),∣∣σ2∗
n − σ2

n

∣∣ ≤ n∑
s=−n

∣∣∣γs(ϕ̂n)− γs(ϕ0)
∣∣∣

≤
n∑

s=−n

sup
ϕ∈Oδ(ϕ0)

|γs(ϕ)− γs(ϕ0)|

≤
∞∑

s=−∞

sup
ϕ∈Oδ(ϕ0)

|γs(ϕ)|+
∞∑

s=−∞

|γs(ϕ0)|

≤
∞∑

s=−∞

sup
ϕ∈Oδ(ϕ0)

∣∣∣∣∣
k∑

i=1

ri∑
j=0

cijs
jξi(ϕ)

−s

∣∣∣∣∣+
∞∑

s=−∞

|γs(ϕ0)| <∞.

Since γs(ϕ̂n)− γs(ϕ0) → 0 for each s ≥ 1, it follows from the domonated convergence theorem

that σ2∗
n − σ2

n → 0 with probability 1.

Since σ∗
n/σn → 1 with probability 1 and σn/σ̂

∗
n → 1 in probability conditional on ϕ̂n, it follows

from the standard argument (see Rao (1973), section 2c) that for each y ∈ R and ω ∈ Ω̃,

P
(
Y ∗
n ≤ y| ϕ̂n

)
= P

√
n
(
X

∗
[k−1] −X

∗
k

)
σ̂∗
n

≤ y

∣∣∣∣∣∣ ϕ̂n


= P

√
n
(
X

∗
[k−1] −X

∗
k

)
σ∗
n

× σ∗
n

σn
× σn
σ̂∗
n

≤ y

∣∣∣∣∣∣ ϕ̂n


→ G(y) as n→ ∞.

The convergence (3.37) follows from the standard result of the equivalence of the weak conver-

gence of the distribution functions and convergence of the quantile functions (see, for example,

van der Vaart (1998), chapter 21). □

3.6 Simulation study

Simulation study was made on the MA(2) process and the AR(1) process to see finite sample

properties of the suggested selection rule. The section 3.6.1 and the section 3.6.2 discuss the

methods for MA(2) and AR(1) respectively. The results are shown in the table 3.1 for MA(2)

and the table 3.2 for AR(1).

3.6.1 Simulation steps for MA(2) process

Computing the true Dn

Let k be the number of populations, n be the sample size of each population and b be the

subsample size.
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1. Generate k independent samples from MA(2) process with the parameters, θ = (θ1, θ2),

that is,

Xi,t = Zi,t + θ1Zi,t−1 + θ2Zi,t−2, t = 0,±1,±2, . . . , (3.38)

where {Zi,t} is a sequence of independent standard normal random variables. (need to gener-

ate n observations for each population separately as dependency arises if kn observations are

generated consecutively.）
2. Obtain the subsumpling estimator, σ̂2

n, of σ
2
n from the samples generated from (3.38).

3. Obtain Yn.

4. Repeat the steps, 1,2, and 3 NR times. （NR=Number of Replications）
5. Obtain D̂n(P

∗) by computing P ∗-quantile of Yn.

Computing D̂n

Let k be the number of populations, n be the sample size of each population and b be the

subsample size.

1. Generate samples from populations.

Generate k independent samples from the MA(2) process with different means, {µi, i = 1, 2, . . . , k},
and a common parameters, θ = (θ1, θ2), that is

Xi,t = µi + Zi,t + θ1Zi,t−1 + θ2Zi,t−2, t = 0,±1,±2, . . . , (3.39)

where {Zi,t} is a sequence of independent standard normal random variables.

2. Estimate the parameters.

Obtain the average, X̄i, for each sample.

Deduct the sample average from each sample.

X ′
i,t = Xi,t − X̄i (3.40)

Obtain the MLE, θ̂i = (θ̂1,i, θ̂2,i) from each sample, {X ′
i,t}nt=1.

Then the estimate of θ is the average of θ̂i:

θ̂n =

(
k−1

k∑
i=1

θ̂1,i, k−1

k∑
i=1

θ̂2,i

)
. (3.41)

3.Estimate Dn

1. Generate k independent samples using MA(2) process with the parameter, θ̂,

that is,

X∗
i,t = Z∗

i,t + θ̂1Z
∗
i,t−1 + θ̂2Z

∗
i,t−2, t = 0,±1,±2, . . . , (3.42)
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where {Z∗
i,t} is a sequence of independent standard normal random variables.

2. Obtain the subsampling estimator σ̂2∗
n of σ2

n from the samples generated by the equation

(3.42).

3. Obtain Y ∗
n by (3.21).

4. Repeat the steps 1, 2 and 3 NR times.（NR=Number of Replications）
5.Obtain D̂n(P

∗) by comuting P ∗-quantile of Y ∗
n .

MSE for D̂n and probability of correct selection

Mean Squared Error (MSE) for D̂n is defined as;

MSE = E(D̂n −Dn)
2. (3.43)

As discussed in the subsection 3.3.2,

PCS = P (CS) = P

(
X̄(k) ≥ X̄[k] −

D̂nσ̂n√
n

)
. (3.44)

MSE and PCS are obtained by simulation as follows.

Generate samples NS times following the item 1 of ”Computing D̂n” in this subsection. Let

D̂n,i be the D̂n obtained from the ith sample. Then MSE is computed by

1

NS

NS∑
i=1

(D̂n,i −Dn)
2. (3.45)

PCS is computed by

1

NS

NS∑
i=1

I

(
X̄(k),i ≥ X̄[k],i −

D̂n,iσ̂n,i√
n

)
, (3.46)

where X̄(k),i, X̄[k],i, D̂n,i, and σ̂n,i are X̄(k), X̄[k], D̂n, and σ̂n, for the ith sample respectively and

I is the indicator function.

3.6.2 Simulation steps for AR (1) process

Computing the true Dn

Let k be the number of populations, n be the sample size of each population and b be the

subsample size.

1. Generate k independent samples from AR(1) process with the parameter, ϕ,

that is,

Xi,t = ϕXi,t−1 + Zi,t, t = 0,±1,±2, . . . , (3.47)
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where {Zit} is a sequence of independent standard normal random variables. .

2. Obtain the subsampling estimator, σ̂2
n, of σ

2
n from the samples generated from the equation

(3.47).

3. Obtain Yn.

4. Repeat the steps, 1,2, and 3 NR times. （NR=Number of Replications）
5. Obtain Dn(P

∗) by computing P ∗-quantile of Yn.

Computing D̂n

Let k be the number of populations, n be the sample size of each population and b be the

subsample size.

1. Generate samples from pupulations.

Generate k independent samples from the AR(1) process with different means, {µi, i = 1, 2, . . . , k},
and a common parameter, ϕ. Let

Yi,t = Xi,t − µi.

Then, Yit is from the AR(1) process;

Yi,t = ϕYi,t−1 + Zi,t, t = 0,±1,±2, . . . , (3.48)

where {Zi,t} is a sequence of independent standard normal random variables.

2. Estimate the parameters.

Obtain the average, X̄i, for each sample.

Deduct the sample average from each sample.

X ′
i,t = Xi,t − X̄i. (3.49)

Obtain the MLE, ϕ̂i, from each sample, {X ′
i,t}nt=1.

Then the estimate of ϕ is the average of ϕ̂i, i = 1, 2, . . . , k:

ϕ̂n = k−1

k∑
i=1

ϕ̂i. (3.50)

3.Estimate Dn

1. Generate k independent samples using AR(1) process with the parameter, ϕ̂,

that is,

X∗
i,t = ϕ̂X∗

i,t−1 + Z∗
i,t, t = 0,±1,±2, . . . , (3.51)

where {Z∗
it} is a sequence of independent standard normal random variables.

2. Obtain the subsampling estimator σ̂2∗
n of σ2

n from the samples generated by (3.51).

3. Obtain Y ∗
n by (3.21)

4. Repeat the steps 1, 2 and 3 NR times.（NR=Number of Replications）
5. Obtain D̂n(P

∗) by computing P ∗-quantile of Y ∗
n .
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MSE for D̂n and probability of correct selection (PCS)

Mean Squared Error (MSE) for D̂n is defined as;

MSE = E(D̂n −Dn)
2. (3.52)

As discussed in the subsection 3.3.2,

PCS = P (CS) = P

(
X̄(k) ≥ X̄[k] −

D̂nσ̂n√
n

)
. (3.53)

MSE and PCS are obtained by simulation.

Generate samples NS times following the item 1 of ”Computing D̂n”in this subsection . Let

D̂n,i be the D̂n generated from the ith sample. Then MSE is computed by

1

NS

NS∑
i=1

(D̂n,i −Dn)
2. (3.54)

PCS is computed by

1

NS

NS∑
i=1

I

(
X̄(k),i ≥ X̄[k],i −

D̂n,iσ̂n,i√
n

)
, (3.55)

where X̄(k),i, X̄[k],i, D̂n,i, and σ̂n,i are X̄(k), X̄[k], D̂n, and σ̂n, for the ith sample respectively and

I is the indicator function.

3.6.3 Simulation result

In this section, the result of a simulation study is given in order to see finite sample properties

of the suggested selection rule.

A relevant measure for the performance of selection rule is the expected size of the selected

subset. Let S be the size of the subset selected by the rule R(D̂n). Since S is a random

variable, we are interested in the expectation of S, E(S). We would like E(S) to be small. An

approximate value of E(S) is computed by

1

NS

NS∑
i=1

Si, (3.56)

where Si is the number of elements in the set
{
1 ≤ j ≤ k : X̄j,i ≥ X̄[k],i − D̂n,iσ̂n,i√

n

}
.

Notation:

k: number of populations
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b: subsample size to obtain σ̂n
NR: number of replication to obtain Yn distribution

NS: number of replication to obtain MSE, PCS and E(S)

PCS: probability for selecting the correct subset containing the sample with the largest mean.

We created three data sets each fromMA(2) process and from AR(1) process. The samples for

5 populations are independent. The means are set to be (1, 2, 3, 4, 5), (1.47, 1.48, 1.49, 1.49, 1.50)

and (1, 1, 1, 1, 3) respectively for MA(2) and (1, 2, 3, 4, 5), (1, 1.2, 1.4, 1.4, 1.5) and (1, 1, 1, 1, 3)

for AR(1). The parameters for MA(2) are -0.5 and -0.2. The parameter for AR(1) is 0.8. We

ran simulations with three different sample size; one: n = 50, b = 10, another n = 100, b = 20,

and the other, n = 200, b = 40. NS is set to be 300. The probability for selecting the subset

which contains the population with the largest mean, P ∗, is to be 0.95 and 0.99. Note that the

true Dn is estimated under NR = 10, 000 for a better estimate.

The results are shown in the Table 3.1 and the Table 3.2.

In case of MA(2) with the mean, 1, 2, 3, 4, 5, and also with the mean, 1, 1, 1, 1, 3, all

PCS of R(D̂n), PCS of R(Dn), E(S) of R(D̂n) and E(S) of R(Dn)are 1. That is to say, only

the population with the largest mean was selected when using Dn and D̂n and no incorrect

selection was made.

However, when there is only a small difference among the means, the subset selected contains

the population whose mean value is not the largest. E(S) is close to 5 and most of PCS is less

than 1 in both cases of MA(2) with the mean, 1.47, 1.48, 1.49, 1.49, 1.50, and AR(1) with the

mean, 1, 1.2, 1,4, 1.4, 1.5.

In case of AR(1) with the mean, 1, 2, 3, 4, 5, and also with the mean, 1, 1, 1, 1, 3, PCS

of R(D̂n) and PCS of R(Dn) are 1 except the case where P ∗ is 0.95, n = 100 and b = 20,

while E(S) of R(D̂n) and E(S) of R(Dn) are more than 1. That is to say, for the most of these

cases, the subset selected contains not only the population with the largest mean, but also some

populations with the mean that is not the largest. The E(S) is smaller when the sample size is

larger.

PCS of R(D̂n) and PCS of R(Dn) are similar. E(S) of R(D̂n) is smaller than E(S) of R(Dn),

that is not what is expected, although they are similar. This remains to be further investigated.

In case of the mean (1, 2, 3, 4, 5) and (1, 1, 1, 1. 3), compared with the result from AR(1)

with the parameter, 0.8, the MA(2) with the parameter, -0.5 and -0.2, resulted in smaller E(S)

and the same PCS, 1, in most of the cases. In addition, Dn for AR(1) with the larger parameter

is larger than that for MA(2) with the smaller parameters.
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parameter:µ1, µ2, µ3, µ4, µ5 1,2,3,4,5

parameter:θ1, θ2 -0.5, -0.2

n b NR NS Dn P ∗ MSE PCS PCS E(S) E(S)

of R(D̂n) of R(Dn) of R(D̂n) of R(Dn)

50 10 1000 300 2.223116 0.95 0.1757988 1 1 1 1

2.875941 0.99 0.3195195 1 1 1 1

100 20 1000 300 2.538334 0.95 0.08408475 1 1 1 1

3.243584 0.99 0.13970983 1 1 1 1

200 40 1000 300 2.857209 0.95 0.02685977 1 1 1 1

3.723132 0.99 0.06446194 1 1 1 1

parameter:µ1, µ2, µ3, µ4, µ5 1.47,1.48,1.49,1.49,1.50

parameter:θ1, θ2 -0.5, -0.2

n b NR NS Dn P ∗ MSE PCS PCS E(S) E(S)

of R(D̂n) of R(Dn) of R(D̂n) of R(Dn)

50 10 1000 300 2.223116 0.95 0.1757988 0.94 0.9633333 4.426667 4.723333

2.875941 0.99 0.3195195 0.9766667 1 4.746667 4.95

100 20 1000 300 2.538334 0.95 0.08408475 0.953333 0.9733333 4.446667 4.616667

3.243584 0.99 0.13970983 0.99 0.9933333 4.806667 4.886667

200 40 1000 300 2.857209 0.95 0.02685977 0.9733333 0.98 4.373333 4.40

3.723132 0.99 0.06446194 0.9866667 0.9966667 4.763333 4.83

parameter:µ1, µ2, µ3, µ4, µ5 1,1,1,1,3

parameter:θ1, θ2 -0.5, -0.2

n b NR NS Dn P ∗ MSE PCS PCS E(S) E(S)

of R(D̂n) of R(Dn) of R(D̂n) of R(Dn)

50 10 1000 300 2.223116 0.95 0.1757988 1 1 1 1

2.875941 0.99 0.3195195 1 1 1 1

100 20 1000 300 2.538334 0.95 0.08408475 1 1 1 1

3.243584 0.99 0.13970983 1 1 1 1

200 40 1000 300 2.857209 0.95 0.02685977 1 1 1 1

3.723132 0.99 0.06446194 1 1 1 1

Table 3.1: MA(2) process
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parameter:µ1, µ2, µ3, µ4, µ5 1, 2, 3, 4, 5

parameter:ϕ 0.8

n b NR NS Dn P ∗ MSE PCS PCS E(S) E(S)

of R(D̂n) of R(Dn) of R(D̂n) of R(Dn)

50 10 1000 300 4.866158 0.95 0.2169513 1 1 2.566667 2.713333

6.624203 0.99 0.6684435 1 1 2.5 2.55

100 20 1000 300 4.198213 0.95 0.04616113 0.9933333 0.993333 2.026667 2.043333

5.517788 0.99 0.1014397 1 1 4.093333 4.38

200 40 1000 300 3.84575 0.95 0.01547903 1 1 1.666667 1.67667

5.072887 0.99 0.05217417 1 1 1.936667 1.97667

parameter:µ1, µ2, µ3, µ4, µ5 1, 1.2, 1.4, 1.4, 1.5

parameter:ϕ 0.8

n b NR NS Dn P ∗ MSE PCS PCS E(S) E(S)

of R(D̂n) of R(Dn) of R(D̂n) of R(Dn)

50 10 1000 300 4.866158 0.95 0.2169513 0.9533333 0.96 4.576667 4.723333

6.624203 0.99 0.6684435 0.99 0.993333 4.88 4.936667

100 20 1000 300 4.198213 0.95 0.04616113 0.9533333 0.9633333 4.653333 4.703333

5.517788 0.99 0.1014397 0.99 0.99 4.903333 4.926667

200 40 1000 300 3.84575 0.95 0.01547903 0.9533333 0.97 4.553333 4.56

5.072887 0.99 0.05217417 0.99 0.9933333 4.873333 4.896667

parameter:µ1, µ2, µ3, µ4, µ5 1, 1, 1, 1, 3

parameter:ϕ 0.8

n b NR NS Dn P ∗ MSE PCS PCS E(S) E(S)

of R(D̂n) of R(Dn) of R(D̂n) of R(Dn)

50 10 1000 300 4.866158 0.95 0.2169513 1 1 3.103333 3.316667

6.624203 0.99 0.6684435 1 1 3.906667 4.286667

100 20 1000 300 4.198213 0.95 0.04616113 1 1 2.026667 2.06

5.517788 0.99 0.1014397 1 1 3.043333 3.193333

200 40 1000 300 3.84575 0.95 0.01547903 1 1 1.226667 1.243333

5.072887 0.99 0.05217417 1 1 1.68 1.743333

Table 3.2: AR(1) process

3.7 Conclusion

We developed the selection rule, R, to select the subset that contains the population with

the largest means when the samples are from the ARMA process. The rule is;

R: Select the ith population if and only if

X i ≥ X [k] −
D̂nσ̂n√

n
, (3.57)
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where D̂n is estimated from the sample. D̂n is obtained by using the Monte Carlo Simulation.

The size of the subset selected, S, should be as small as possible.

We made a simulation study using different figures for the parameters, µ, θ and ϕ to create

samples with different properties. The simulation study reveals that the selection rule R(D̂n)

gives smaller E(S), when the difference among µi, i = 1, 2, . . . , k, is large and larger E(S) when

the difference is small. From the equation (3.10) and the equation (3.11), the larger parameters

are, the larger σn is. Dn is dependent on the parameters, θ and ϕ and the simulation result

shows that Dn for AR(1) with the larger parameter is larger than that of MA(2) with the

smaller parameters. Then the selection rule R(D̂n) gives the larger range for populations to be

selected when the parameter is large, resulting in large E(S). As mentioned in the subsection

3.6.3, the simulation results support this statement.

Subsampling method is used to estimate σ2
n. We must determine what the subsample size,

b, should be. We determined b by testing different values in our simulation study. Therefore,

the size of b remains to be studied. In addition, the E(S) of R(Dn) is larger than the E(S) of

R(D̂n) in case where they are not equal to 1. It should not be, although they are similar. This

also remains to be investigated.
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Appendix C

The proof of the nondependency of the distribution of (3.15) on (µ1, µ2, . . . , µk)
′, σ2

ε :

It suffices to show that the distribution of σ̂n/σn is free of (µ1, µ2, . . . , µk)
′, σ2

ε .

σn
σε

=
1

σε

√√√√ n−1∑
s=−(n−1)

(
1− |s|

n

)
γ(s)

=

√√√√ n−1∑
s=−(n−1)

(
1− |s|

n

)
γ(s)

σ2
ε

=

√√√√ n−1∑
s=−(n−1)

(
1− |s|

n

) ∞∑
j=0

ψjψj+|k|.

Therefore σn

σε
is free of (µ1, µ2, . . . , µk)

′, σ2
ε .

Since

σ̂2
b,n

σ2
ε

=
1

k
· 1

n− b+ 1

k∑
j=1

n−b+1∑
i=1

{
1√
b

i+b−1∑
t=i

(
Xj,t − X̄j

)
σε

}2

(C.1)

and

(Xj,t − X̄j)

σε
=

1

σε

{
(Xj,t − µj)− (X̄j − µj)

}
=

(
Xj,t − µj

σε

)
− 1

n

n∑
t=1

(
Xj,t − µj

σε

)
,

σ̂2
b,n/σ

2
ε is a function of the kn-dimensional vector,(

X11 − µ1

σε
,
X12 − µ1

σε
, . . . ,

Xkn − µk

σε

)′

.

Therefore, the distribution of σ̂n

σn
does not depend on (µ1, µ2, . . . , µk)

′ and σ2
ε . □
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