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Preface

This thesis consists of three parts.
In chapter 1, we study the spectral and pseudospectral properties of the

differential operator Hϵ = −∂2
x + x2m + iϵ−1f(x) on Hilbert space L2(R),

where ϵ > 0 is a small parameter, m ∈ N and f is a real-valued Morse
function which satisfies |∂l

x(f(x) − |x|−k)| ≤ C|x|−k−l−1 for l = 0, 1, 2, 3
and large |x|. We show that Ψ(ϵ) = (supλ∈R ∥(Hϵ − iλ)−1∥)−1 and Σ(ϵ) =
inf ℜ(σ(Hϵ)) satisfy C−1ϵ−ν(m) ≤ Ψ(ϵ) ≤ Cϵ−ν(m) and Σ(ϵ) ≥ C−1ϵ−ν(m),
ν(m) = min

{
2m

k+3m+1
, 1
2

}
. This extends the result of I.Gallagher, T.Gallay

and F.Nier [6] (2009) for the case m = 1 to general m ∈ N. The result of
this chapter is taken form [1].

In chapter 2, we consider d-dimensional time dependent Schrödinger equa-
tions i∂tu = H(t)u, H(t) = −(∂x − iA(t, x))2 + V (t, x) in the Hilbert space
H = L2(Rd). We assume V (t, x) and A(t, x) are almost critically singular
with respect to spatial variables x ∈ Rd both locally and at infinity for the
operator H(t) to be essentially selfadjoint on C∞

0 (Rd). In particular, when
magnetic fields B(t, x) produced by A(t, x) are very strong at infinity, V (t, x)
can explode to the negative infinity like −θ|B(t, x)| − C(|x|2 + 1) for some
θ < 1 and C > 0. We show that equations uniquely generate unitary prop-
agators in H under suitable conditions on the size and singularities of time
derivatives of potentials V̇ (t, x) and Ȧ(t, x). The result of this chapter is
taken from [3].

In chapter 3, we consider the massless Dirac operator H = α ·D +Q(x)
on the Hilbert space L2(R3,C4), where Q(x) is a 4 × 4 Hermitian matrix
valued function which decays at infinity. We show that the zero resonance
is absent for H, extending recent results of Y. Saitō-T. Umeda [21] and Y.
Zhong -G. Gao [30]. The result of this chapter is taken from [2].

Acknowledgment I would like to express my sincere gratitude to my
supervisor, Professor Kenji Yajima who guided and supported me during my
study at Gakushuin University.
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Chapter 1

A remark on spectral
properties of certain
non-selfadjoint Schödinger
operators.

1.1 Introduction.

We consider the following one-dimensional Schrödinger operator with a com-
plex potential

H̃ϵ = −∂2
x + x2 +

i

ϵ
f(x), x ∈ R

acting on Hilbert space L2(R) where ϵ > 0 is a small parameter and f(x) is
a real-valued function. In [24, ICM], C.Villani asked the following question:

Problem 1.2. What is the condition on f(x) for Σ̃(ϵ) := inf ℜ(σ(H̃ϵ)) →
+∞ as ϵ → 0 and how the growth rate of divergence ?

In [22], J.H.Schenker has proved the following theorem.

Theorem 1.2.1. If Lt := {x ∈ R; f(x) = t} is essentially nowhere dense for
each t ∈ R, then Σ̃(ϵ) → +∞ as ϵ → 0.

Here, we say that a set S is essentially nowhere dense if S = S
′ ∪N where

S
′
is nowhere dense and N has Lebesgue measure zero. In [6], I.Gallagher,

T.Gallay and F.Nier have studied the growth rate of Σ̃(ϵ) and the spectral

7



8

quantity Ψ̃(ϵ) :=
(
supλ∈R ∥(H̃ϵ − iλ)−1∥

)−1

under the condition that f(x) is

a real-valued Morse function.
In this paper, we study the same problem for

Hϵ = −∂2
x + x2m +

i

ϵ
f(x), x ∈ R,

where m ≥ 1 is an integer. We shall examine how the results [6] will be
changed or unchanged if the increasing rate m ∈ N of the real part of the
potential is changed. We begin observing some properties of the operator Hϵ.
It is well known that the operator H∞ := −∂2

x + x2m is self-adjoint in L2(R)
with domain D = {u ∈ H2(R);x2mu ∈ L2(R)}. We consider the operator
Hϵ with same domain D. The operator H∞ has a compact resolvent and the
spectrum σ(H∞) consists of a countable number discrete positive eigenvalues.
By virtue of the classical perturbation theory, the operator Hϵ also has a
compact resolvent for all ϵ > 0, and the spectrum σ(Hϵ) again consists of a
countable number discrete eigenvalues {λn(ϵ)}n∈N with ℜ(λn(ϵ)) → +∞ as
n → ∞. The numerical range

Θ(Hϵ) = {⟨Hϵu, u⟩L2 ;u ∈ D, ∥u∥L2 = 1}
is obviously contained in the rectangle

Rϵ = {λ ∈ C;ℜ(λ) ≥ a0, ϵℑ(λ) ∈ f(R)}
where a0 > 0 is the lowest eigenvalue of the self-adjoint operator H∞. Hence,
for all n ∈ N and all ϵ > 0, we have

λn(ϵ) ∈ Θ(Hϵ) ⊂ Rϵ.

It follows that the imaginary axis iR is contained in the resolvent set of Hϵ.
We define

Σ(ϵ) = inf ℜ(σ(Hϵ)) = min
n∈N

ℜ(λn(ϵ)), Ψ(ϵ) =

(
sup
λ∈R

∥(Hϵ − iλ)−1∥
)−1

.

Then, we remark that

Σ(ϵ) ≥ Ψ(ϵ) ≥ a0. (1.1)

Indeed, for any λ ∈ R, we have

1

dist(iλ, σ(Hϵ))
= Rsp((Hϵ − iλ)−1) ≤ ∥(Hϵ − iλ)−1∥ ≤ 1

dist(iλ,Θ(Hϵ))
,

8
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where Rsp is the spectral radius. Thus, taking the supremum over λ ∈ R, we
have

1

Σ(ϵ)
≤ 1

Ψ(ϵ)
≤ sup

λ∈R

1

dist(iλ,Rϵ)
=

1

a0
,

which implies (1.1)
Since Θ(Hϵ) ⊂ Rϵ, Hϵ−a0 is maximal accretive and by the Hille-Yoshida

theorem, it follows that ∥e−tHϵ∥ ≤ e−a0t ≤ 1, for all t ≥ 0. In [6], I. Gallagher,
T. Gallay and F. Nier have shown that the decay rate of the semigroup e−tHϵ

can be controlled by the information Σ(ϵ) and Ψ(ϵ) as follows. The following
Lemma will be proved in Appendix. Here, we corrected their mistakes.

Lemma 1.2.2. Let A be a maximal accretive operator in a Hilbert space X.
Suppose that the numerical range Θ(A) := {⟨Au, u⟩X ;u ∈ D(A), ∥u∥X = 1}
is contained in the sector {z ∈ C; |argz| ≤ π

2
− 2α} for some α ∈ (0, π

4
] and

A is invetible. Define

Σ = infℜ(σ(A)), Ψ =

(
sup
λ∈R

∥(A− iλ)−1∥
)−1

.

Then the following holds:

(i) If there exist C ≥ 1, µ > 0 such that ∥e−tA∥ ≤ Ce−µt for all t ≥ 0,
then

Σ ≥ µ, Ψ ≥ µ

1 + log(C)
.

(ii) For any 0 < µ < Σ, we have ∥e−tA∥ ≤ C(A, µ)e−µt for all t ≥ 0, where

C(A, µ) =
1

π

{
µ

tanα
N(A, µ) +

2π

sinα

}
, N(A, µ) = sup

λ∈R
∥(A−µ−iλ)−1∥.

(iii) If, moreover, 0 < µ < Ψ, then

N(A, µ) ≤ 1

Ψ− µ
.

For the case m = 1, I. Gallagher, T. Gallay and F. Nier [6] have studied
the lower bound for Σ̃(ϵ) by using a variational method ”hypocoercivity”
which has developed by C. Villani [23].
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Theorem 1.2.3. Suppose that f ∈ C3(R) satisfies f
′′
, f

′′′ ∈ L∞(R), and
there exist C1 > 0 and 0 < ν ≤ 1

2
such that

⟨Ĥϵu, u⟩ :=
∫
R

(
|∂xu|2 + x2m|u|2 + 1

ϵ2
f

′
(x)2|u|2

)
dx ≥ C1

ϵ2ν
∥u∥2 (1.2)

for all u ∈ D and all 0 < ϵ ≪ 1. Then there exists C2 > 0 such that, for all
0 < ϵ ≪ 1,

Σ(ϵ) ≥ C2

ϵν
, Ψ(ϵ) ≥ C2

ϵν log(2/ϵ)
. (1.3)

To state our main theorem, we set the following assumption.

Assumption 1.2.4. Assume that f ∈ C3(R,R) has the following properties:

(i) All critical points of f are nondegenerate, i.e., f
′
(x) = 0 implies f

′′
(x) ̸=

0,

(ii) There exist positive constants C and k such that, for all x ∈ R with
|x| ≥ 1, ∣∣∣∣∂l

x

(
f(x)− 1

|x|k

)∣∣∣∣ ≤ C

|x|k+l+1
, for l = 0, 1, 2, 3.

Loosely speaking, we consider the Morse functions which are bounded
together with their derivatives up to the third order, and which decay like
|x|−k at infinity.

Under the Assumption 1.2.4, it is straightforward to estimate the lowest
eigenvalue of the self-adjoint operator Ĥϵ. The following lemma is also a
generalization of Lemma 1.7 of [6].

Lemma 1.2.5. Suppose that f satisfies Assumption 1.2.4. Then there exists
C ≥ 1 such that, for all 0 < ϵ ≪ 1,

1

Cϵ2ρ(m)
≤ inf σ(Ĥϵ) ≤

C

ϵ2ρ(m)
, where ρ(m) = min

{
m

k +m+ 1
,
1

2

}
.

The proof of this lemma will be given in Appendix. We remark that
under the Assumption 1.2.4, the inequality (1.2) is satisfied with ν = ρ(m)
by Lemma 1.2.5. Thus, if f satisfies the Assumption 1.2.4, we have

Σ(ϵ) ≥ C

ϵρ(m)
, Ψ(ϵ) ≥ C

ϵρ(m) log(2/ϵ)
. (1.4)

For the casem = 1, by modifying the proof of Theorem 1.2.3, I. Gallagher,
T. Gallay and F. Nier [6] improved the exponent ρ(m), if f satisfies the
Assumption 1.2.4. We also extend this result for the case general m ∈ N.
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Theorem 1.2.6. Suppose that f satisfies Assumption 1.2.4. Then there
exists C > 0 such that, for all 0 < ϵ ≪ 1,

Σ(ϵ) ≥ C

ϵν(m)
, Ψ(ϵ) ≥ C

ϵν(m) log(2/
√
ϵ)
, where ν(m) = min

{
2m

k + 3m+ 1
,
1

2

}
.

(1.5)

We remark that since ν(m) > ρ(m) for allm ∈ N, the lower bound in (1.5)
is strictly better than in (1.4). However, Theorem 1.2.6 cannot give optimal
estimates for f satisfying the Assumption 1.2.4. In fact, as we shall see
below, we can remove the logarithmic term in (1.5) by using the localization
techniques and semicalssical subelliptic estimates. In particular, we give an
optimal estimate for Ψ(ϵ). The following theorem is main result of this paper.

Theorem 1.2.7. Suppose that f satisfies Assumption 1.2.4. Then there exists
C ≥ 1 such that, for all 0 < ϵ ≪ 1,

1

Cϵν(m)
≤ Ψ(ϵ) ≤ C

ϵν(m)
.

Remark 1.2.8. For the casem = 1, Theorem 1.2.7 was proven by I.Gallagher,
T.Gallay and F.Nier [6]. Our result shows that ν(m) > ν(n) if m > n.

As we already remarked in (1.1), we know that Σ(ϵ) ≥ Ψ(ϵ). However,
the following theorem shows that Σ(ϵ) can be much bigger than Ψ(ϵ) in some
particular cases. We remark that for self-adjoint operators, Σ = Ψ by virtue
of the spectral theorem, where Σ,Ψ defined in Lemma 1.2.2. The following
is also a generalization of the Theorem 1.9 of [6].

Theorem 1.2.9. Fix k > 0 and set f(x) = (1 + x2)−k/2. Then there exists
a constant C > 0 such that for all 0 < ϵ ≪ 1,

Σ(ϵ) ≥ C

ϵν
′
(m)

, where ν
′
(m) = min

{
2m

k + 2m
,
1

2

}
.

The rest of the paper is organized as follows. In Section 1.3, by using
a variational method, we prove Theorem 1.2.3 and Theorem 1.2.6. In Sec-
tion 1.4, by using the localization techniques and semiclassical subelliptic
estimates, we prove Theorem 1.2.7. Theorem 1.2.9 is proved in Section 1.5.
Before going into the next, we remark that

(i) Ψ(ϵ) > a0 if f ∈ L∞(R) is not a constant,

(ii) Ψ(ϵ) → ∞ as ϵ → 0 if f ∈ L∞(R) ∩ C0(R) and for any t ∈ R, Lt has
empty interiors.
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This can be proven similarly to Proposition 1.4 and Lemma 2.1 of [6]. Through-
out this paper, we denote by C various constants whose exact values are not
important. Thus they may differ from one place to the other.

1.3 Variational Estimates

In this section, we prove Theorem 1.2.3 by using a variational method. For
the case m = 1, I. Gallagher, T. Gally and F. Nier [6] have studied the lower
bound of Σ̃(ϵ) and Ψ̃(ϵ) by applying a variational method hypocoercivity
developed by C. Villani [23]. We consider the linear operator of the form
L = A∗A + B in a Hilbert space X where A is the linear operator and
B is the skew symmetric operator. The method of hypocoercivity allows
us to compare the spectral properties of L with the associated self-adjoint
operator L̂ = A∗A + C∗C where C = [A,B] := AB − BA. For the case
m = 1, by setting X = L2(R), A = −∂x+x and B = (i/ϵ)f(x), then we have
A∗A + B = H̃ϵ − 1. On the other hand, since C = [A,B] = (i/ϵ)f

′
(x), the

associated self-adjoint operator ˆ̃Hϵ is defined by A∗A + C∗C = ˆ̃Hϵ − 1 has

the explicit form ˆ̃Hϵ = −∂2
x + x2 + (1/ϵ2)f

′
(x)2. For the case general m ∈ N,

the method of hypocoercivity cannot be applied. However, by considering
the similar operator

Ĥϵ = −∂2
x + x2m +

1

ϵ2
f

′
(x)2,

we obtain the lower bound of Σ(ϵ) and Ψ(ϵ).

1.3.1 Proof of Theorem 1.2.3

Suppose that f ∈ C3(R) satisfies f
′′
, f

′′′ ∈ L∞(R) and the inequality (1.2)
holds for some 0 < ν ≤ 1/2. Let u(x, t) be a solution of the equation:

∂tu(x, t) = −Hϵu(x, t) = ∂2
xu(x, t)− x2mu(x, t)− i

ϵ
f(x)u(x, t). (1.6)

We define the quadratic functional as follows:

Φ(t) =

∫
R

{
1

2
|u|2 + α

2
(|∂xu|2 + x2m|u|2) + βℜ((∂xū)if

′
u) +

γ

2
(f

′
)2|u|2

}
,

(1.7)
where α, β, γ are positive constants which precise values will be determined
later. We assume that 4β2 ≤ αγ so that
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1

2
∥u(t)∥2 ≤ Φ(t) ≤

∫
R

{
1

2
|u|2 + 3α

4
(|∂xu|2 + x2m|u|2) + 3γ

4
(f

′
)2|u|2

}
dx,

(1.8)
for all t ≥ 0. Then, we prove the following inequality:

Φ
′
(t) ≤ −ηΦ(t), with η = O(ϵ−ν). (1.9)

To prove (1.9), we compute the time derivative of Φ(t). Using the identity
(1.6) and after integration by parts, we obtain the following identities:

1

2

d

dt

∫
R
|u|2dx = −

∫
R
(|∂xu+ x2m|u|2|)dx, (1.10)

α

2

d

dt

∫
R
(|∂xu|2 + x2m|u|2)dx = −α

∫
R
|∂2

xu− x2mu|2dx− α

ϵ
ℜ
∫
R
i(∂xū)(f)

′
udx,

(1.11)

β
d

dt
ℜ
∫
R
i(∂xū)(f

′
)udx = −β

ϵ

∫
R
(f

′
)2|u|2dx− βℜ

∫
R
iūf

′′′
∂xudx

+2βℜ
∫
R
i(∂xū)(f

′
)(∂2

xu− x2mu)dx, (1.12)

γ

2

d

dt

∫
R
(f

′
)2|u|2dx = −γ

∫
R
(f

′
)2(|∂xu|2 + x2m|u|2)dx− 2γℜ

∫
R
f

′
f

′′
(∂xu)ūdx.

(1.13)

To estimate the various terms in Φ
′
(t), we define

Lj = ∥∂j
xf∥∞, j = 2, 3

and we use the following bounds:

−α

ϵ
ℜ
∫
R
i(∂xū)f

′
udx ≤ 1

4

∫
R
|∂xu|2dx+

α2

ϵ2

∫
R
(f

′
)2|u|2dx, (1.14)

−βℜ
∫
R
iūf

′′′
(∂xu)dx ≤ L3β

∫
R
|u(∂xu)|dx ≤ L3β(a0 + 1)

2a0

∫
R
(|∂xu|2 + x2m|u|2)dx,

(1.15)

2βℜ
∫
R
i(∂xū)f

′
(∂2

xu− x2mu)dx ≤ α

2

∫
R
|∂2

xu− x2mu|2dx+
2β2

α

∫
R
(f

′
)2|∂xu|2dx,

(1.16)

−2γℜ
∫
R
f

′
f

′′
ū(∂xu)dx ≤ 1

4

∫
R
|∂xu|2dx+ 4γ2L2

2

∫
R
(f

′
)2|u|2dx. (1.17)
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Using the estimate (1.10)-(1.17), we have

Φ
′
(t) ≤

(
−1

2
+

L3β(a0 + 1)

2a0

)∫
R
(|∂xu|2 + x2m|u|2)dx

−α

2

∫
R
|∂2

xu− x2mu|2dx+

(
−β

ϵ
+

α2

ϵ2
+ 4γ2L2

2

)∫
R
(f

′
)2|u|2dx

+

(
−γ +

2β2

α

)∫
R
(f

′
)2(|∂xu|2 + x2m|u|2)dx. (1.18)

We now define positive constants α, β and γ as follows:

α =

(
βϵ

4

) 1
2

, β = min

{
a0

2L3(a0 + 1)
,

1

32L2

}
, γ = 8

(
β3

ϵ

) 1
2

. (1.19)

Then, it is obvious that 4β2 = αγ, 4γ2L2
2 ≤ β/4ϵ, and we thus have

Φ
′
(t) ≤ −1

4

∫
R
(|∂xu|2 + x2m|u|2)dx− β

2ϵ

∫
R
(f

′
)2|u|2dx (1.20)

−α

2

∫
R
|∂2

xu− x2mu|2dx− γ

2

∫
R
(f

′
)2(|∂xu|2 + x2m|u|2)dx. (1.21)

We neglect both terms in (1.21) and use only the upper bound (1.20). We
may assume ϵ ≤ 1/(2β) without losing generality. Using (1.20) and (1.2), we
obtain that

Φ
′
(t) ≤ −1

8

∫
R
(|∂xu|2+x2m|u|2)dx− β

4ϵ

∫
R
(f

′
)2|u|2dx−βC1

4

(2β)ν+1

ϵν

∫
R
|u|2dx.

(1.22)
Thus, combining (1.8) and (1.22), we have

Φ
′
(t) ≤ −ηΦ(t) with η = min

{
1

6α
,
β

3ϵγ
,
βC1(2β)

ν+1

2ϵν

}
, (1.23)

which proves (1.9).
We next deduce some information of the semigroup e−tHϵ in L2(R). Let

u(x, t) be a solution of the equation (1.6) with initial data u0 ∈ L2(R). By
integrate with respect to t in (1.10), we have
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∫ √
ϵ

0

{
∥∂xu(t)∥2 + ∥xmu(t)∥2

}
dt =

1

2

(
∥u0∥2 − ∥u(

√
ϵ)∥2

)
≤ 1

2
∥u0∥2.

(1.24)
Then, there exists 0 < τ ≤

√
ϵ such that

∥u(τ)∥2 ≤ ∥u0∥2, ∥∂xu(τ)∥2 + ∥xmu(τ)∥2 ≤ ∥u0∥2

2
√
ϵ
, (1.25)

here, we used the fact that ∥u(t)∥2 is monotone decreasing function of t (see
(1.10)). Using (1.7), (1.19), (1.25) and the fact that |f ′

(x)| ≤ |f ′
(0)|+L2(1+

|x|m) for all x ∈ R, there exists C > 0 such that for any 0 < ϵ ≪ 1,

Φ(
√
ϵ) ≤ Φ(τ) ≤ C

ϵ
∥u0∥2. (1.26)

Hence, we have

∥u(t+
√
ϵ)∥2 ≤ 2Φ(t+

√
ϵ) ≤ 2e−ηtΦ(

√
ϵ) ≤ 2C

ϵ
e−ηt∥u0∥2, for all t ≥ 0,

and it follows that

∥e−(t+
√
ϵ)Hϵ∥ ≤

(
2C

ϵ

) 1
2

e−
C2t
ϵν , for all t ≥ 0.

By virtue of Lemma 1.2.2 (i), we have

Σ(ϵ) ≥ C2

ϵν
.

Since ν ≤ 1/2 and ∥e−tHϵ∥ ≤ 1 for all t ≥ 0, we have

∥(Hϵ − iλ)−1∥ ≤
∫ ∞

0

∥e−tHϵ∥dt ≤
∫ √

ϵ

0

dt+

∫ ∞

0

min

{
1,

(
2C

ϵ

) 1
2

e−
C2t
ϵν

}
dt

≤ ϵν +
ϵν

C2

{
log

(
2C

ϵ

) 1
2

+ 1

}
, for all λ ∈ R.

Thus, taking the supremum over λ ∈ R, we have

Ψ(ϵ) ≥ C

ϵν log
(
2
ϵ

) .
This completes the proof of Theorem 1.2.3.
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1.3.2 Improved decay rate under the Assumption 1.2.4-
Proof of Theorem 1.2.6

For the case m = 1, under the Assumption 1.2.4, by considering the func-
tional Φ(t) defined in (1.7) with the parameters α, β, γ depending on the
space variable x, I. Gallagher, T. Gallay and F. Nier [6] have improved the
exponent ν in Theorem 1.2.3. In this section, we generalize their result to
the case general m ∈ N.

Let u(x, t) be a solution of the equation (1.6). We again consider the
quadratic functional Φ(t) defined by (1.7). However, now α, β, γ are positive
functions of space variable x. Let β0 > 0 be a small constant whose precise
value will be determined later. Take a large enough constant A > 0 so that
all critical points of f are contained in the interval [−A + 1, A − 1]. Then,
we define functions α(x), β(x), γ(x) as follows:

α(x) =

(
β(x)ϵ

4

)1/2

, γ(x) = 8

(
β(x)3

ϵ

)1/2

(1.27)

β(x) =


β0, if |x| ≤ A,

β0

(
|x|
A

)k−m+1

, if A ≤ |x| ≤ Bϵ,

β0ϵ
− k−m+1

k+3m+1 , if |x| ≥ Bϵ, Bϵ := Aϵ−
1

k+3m+1

(1.28)

where k is as in the Assumption 1.2.4. It is easy to verify that the function
β(x) has the following properties: for any δ > 0 there exists ϵ0 > 0 such that
for any 0 < ϵ < ϵ0, all x ∈ R

ϵ
1
2β

′
(x)2 ≤ δβ(x)

3
2 , ϵβ(x) ≤ δ, ϵβ

′
(x)2 ≤ δβ(x). (1.29)

We again prove the following inequality as in the proof of Theorem 1.2.3.

Φ
′
(t) ≤ −ηΦ(t), with η = O(ϵ−ν(m)), ν(m) = min

{
2m

k + 3m+ 1
,
1

2

}
.

(1.30)
We compute the time derivative of Φ(t). We shall only point out what mod-
ifications are necessary in Theorem 1.2.3. The equation (1.10) is unchanged.
The equation (1.11) is changed as follows:

1

2

d

dt

∫
R
α(x)(|∂xu|2 + x2m|u|2)dx = −

∫
R
α(x)|∂2

xu− x2mu|2dx

16
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− 1

ϵ
ℜ
∫
R
iα(x)(∂xū)(f)

′
udx−ℜ

∫
R
α

′
(x)(∂xū)(∂

2
xu− x2mu)dx. (1.31)

Using (1.29), we have for small ϵ > 0,

α
′
(x)2

α(x)
=

ϵ1/2β
′
(x)2

8β(x)3/2
≤ 1

12
, for all x ∈ R.

The last term of right hand side (1.31) is bounded as follows:

−ℜ
∫
R
α

′
(x)(∂xū)(∂

2
xu− x2mu)dx ≤ 1

4

∫
R
α(x)|∂2

xu− x2mu|2dx+

∫
R

α
′
(x)2

α(x)
|∂xu|2dx

≤ 1

4

∫
R
α(x)|∂2

xu− x2mu|2dx+
1

12

∫
R
|∂xu|2dx.

Since α(x)2 = β(x)ϵ/4, the second term of right hand side (1.31) is bounded
as follows:

−1

ϵ
ℜ
∫
R
iα(x)(∂xū)f

′
udx ≤ 1

4

∫
R
|∂xu|2dx+

1

4ϵ

∫
R
β(x)(f

′
)2|u|2dx.

Thus, we have

1

2

d

dt

∫
R
α(x)(|∂xu|2 + x2m|u|2)dx ≤− 3

4

∫
R
α(x)|∂2

xu− x2mu|2dx

+
1

3

∫
R
|∂xu|2dx+

1

4ϵ

∫
R
β(x)(f

′
)2|u|2dx.

(1.32)

The equation (1.12) is changed as follows:

d

dt
ℜ
∫
R
iβ(x)(∂xū)(f

′
)udx = −1

ϵ

∫
R
β(x)(f

′
)2|u|2dx−ℜ

∫
R
iβ(x)ūf

′′′
∂xudx

+ 2ℜ
∫
R
iβ(x)(∂xū)(f

′
)(∂2

xu− x2mu)dx+ ℜ
∫
R
iβ

′
(x)ūf

′
(∂2

xu− x2mu)dx

−ℜ
∫
R
iβ

′
(x)ūf

′′
(∂xu)dx. (1.33)

Since β
′
(x)2/α(x) ≪ β(x)/ϵ for small enough ϵ > 0, the forth term of right

hand side (1.33) is bounded as follows:
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ℜ
∫
R
iβ

′
(x)ūf

′
(∂2

xu− x2mu)dx ≤ 1

8

∫
R
α(x)|∂2

xu− x2mu|2dx+ 2

∫
R

β
′
(x)2

α(x)
(f

′
)2|u|2dx

≤ 1

8

∫
R
α(x)|∂2

xu− x2mu|2dx+
1

12ϵ

∫
R
β(x)(f

′
)2|u|2dx,

(1.34)

Similarly, the fifth term of right hand side (1.33) is bounded as follows:

ℜ
∫
R
iβ

′
(x)ūf

′′
(∂xu)dx ≤ 1

12

∫
R
|∂xu|2dx+ 3

∫
R
β

′
(x)2(f

′′
)2|u|2dx

≤ 1

12

∫
R
|∂xu|2dx+

1

12ϵ

∫
R
β(x)(f

′
)2|u|2dx, (1.35)

where in the last inequality we used (1.29) and the fact that |f ′′
(x)| ≤

Ck|f
′
(x)| for all x ∈ supp β

′
. Since α(x)2 = β(x)ϵ/4, the third term of

right hand side (1.33) is bounded as follows:

2ℜ
∫
R
iβ(x)(∂xū)f

′
(∂2

xu−x2mu)dx ≤ 1

2

∫
R
α(x)|∂2

xu−x2mu|2dx+1

2

∫
R
γ(x)(f

′
)2|∂xu|2dx.

It remains to estimate the second term of right hand side (1.33). We first
note that

−ℜ
∫
R
iβ(x)ūf

′′′
(∂xu)dx ≤ 1

12

∫
R
|∂xu|2dx+ 3

∫
|x|≤A

β(x)2(f
′′′
)2|u|2dx

+ 3

∫
|x|≥A

β(x)2(f
′′′
)2|u|2dx.

We choose β0 > 0 so that 3β2
0L

2
3/a0 ≤ 1/6. Then, we have

3

∫
|x|≤A

β(x)2(f
′′′
)2|u|2dx ≤ 3β2

0L
2
3

∫
R
|u|2dx ≤ 1

6

∫
R
(|∂xu|2 + x2m|u|2)dx.

Using (1.29) and the fact that |f ′′′
(x)| ≤ Ck|f

′
(x)| for all |x| ≥ A, we have

for small enough ϵ > 0,

3

∫
|x|≥A

β(x)2(f
′′′
)2|u|2dx ≤ 1

12ϵ

∫
R
β(x)(f

′
)2|u|2dx.
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Summarizing, we thus have

d

dt
ℜ
∫
R
iβ(x)f

′
u(∂xū)dx ≤− 3

4ϵ

∫
R
β(x)(f

′
)2|u|2dx+

1

3

∫
R
(|∂xu|2 + x2m|u|2)dx

+
5

8

∫
R
α(x)|∂2

xu− x2mu|2dx+
1

2

∫
R
γ(x)(f

′
)2|∂xu|2dx.

(1.36)

Finally, we consider (1.13). The equation (1.13) is changed as follows:

1

2

d

dt

∫
R
γ(x)(f

′
)2|u|2dx = −

∫
R
γ(x)(f

′
)2(|∂xu|2 + x2m|u|2)dx

−ℜ
∫
R
γ

′
(x)(f

′
)2ū(∂xu)dx− 2ℜ

∫
R
γ(x)f

′
f

′′
(∂xu)ūdx. (1.37)

Using (1.29), we have for small enough ϵ > 0, γ
′
(x)2/γ(x) ≪ β(x)/ϵ. Then,

the second term of right hand side (1.37) is bounded as follows:

−ℜ
∫
R
γ

′
(x)(f

′
)2ū(∂xu)dx ≤ 1

4

∫
R
γ(x)(f

′
)2|∂xu|2dx+

∫
R

γ
′
(x)2

γ(x)
(f

′
)2|u|2dx

≤ 1

4

∫
R
γ(x)(f

′
)2|∂xu|2dx+

1

12ϵ

∫
R
β(x)(f

′
)2|u|2dx.

To estimate the third term of right hand side (1.37), we take a partition of
unity ϕ1(x)+ϕ2(x) ≡ 1 such that ϕ1, ϕ2 ∈ C∞(R), suppϕ1 ⊂ {|x| ≤ A}, and
suppϕ2 ⊂ {|x| ≥ 3

2
A}. We define γ1 = γϕ1 and γ2 = γϕ2 and choose β0 > 0

so that 768L2
2β

2
02

2|k−m+1| ≤ 1/12. Then, we have

−2ℜ
∫
R
γ1(x)f

′
f

′′
ū(∂xu)dx ≤ 1

12ϵ

∫
R
β(x)(f

′
)2|u|2dx+ 12ϵL2

2

∫
|x|≤2A

γ(x)2

β(x)
|∂xu|2dx

≤ 1

12ϵ

∫
R
β(x)(f

′
)2|u|2dx+

1

12

∫
R
|∂xu|2dx,

here, in the second inequality, we used ϵγ(x)2/β(x) = 64β(x)2 and the fact
that β(x) ≤ β02

|k−m+1| for |x| ≤ 2A. On the other hand, integrating by parts
in the third term of right hand side (1.37), we have

−2ℜ
∫
R
γ2(x)f

′
f

′′
ū(∂xu)dx =

∫
R
γ2(x)

(
(f

′′
)2 + f

′
f

′′′
)
|u|2dx+

∫
R
γ

′

2(x)f
′
f

′′|u|2dx.
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Since |γ′
(x)/γ(x)| = 3

2
|β ′

(x)/β(x)| ≤ |k−m+1|/A by the definition of β(x)

and γ(x), it is obvious that |γ ′
2(x)| ≤ Cγ(x) for some C > 0 independent of

ϵ > 0. Using the fact that |f ′′′
(x)| + |f ′′

(x)| ≤ Ck|f
′
(x)| for all x ∈ supp γ2

and γ(x) ≪ β(x)/ϵ for small enough ϵ > 0, we have

−2ℜ
∫
R
γ2(x)f

′
f

′′
ū(∂xu)dx ≤ C

∫
R
γ(x)(f

′
)2|u|2dx ≤ 1

12ϵ

∫
R
β(x)(f

′
)2|u|2dx.

Thus, we have

1

2

d

dt

∫
R
γ(x)(f

′
)2|u|2dx ≤− 3

4

∫
R
γ(x)(f

′
)2(|∂xu|2 + x2m|u|2)dx

+
1

12

∫
R
|∂xu|2dx+

1

4ϵ

∫
R
β(x)(f

′
)2|u|2dx. (1.38)

Summarizing the estimates (1.10), (1.32), (1.36) and (1.38), we obtain that

Φ
′
(t) ≤ −1

4

∫
R
(|∂xu|2 + x2m|u|2)dx− 1

4ϵ

∫
R
β(x)(f

′
)2|u|2dx (1.39)

− 1

8

∫
R
α(x)|∂2

xu− x2mu|2dx− 1

4

∫
R
γ(x)(f

′
)2(|∂xu|2 + x2m|u|2)dx. (1.40)

We neglect both terms in (1.40) and use only the upper bound in (1.39) as in
the proof of Theorem 1.2.3. We use the following fact which will be proved
in Lemma 1.6.1 (Appendix). There exists C > 0 such that for any u ∈ D
and 0 < ϵ ≪ 1,

∫
R

(
|∂xu|2 + x2m|u|2 + β(x)f

′
(x)2

ϵ
|u|2

)
dx ≥ C

ϵν(m)
∥u∥2, ν(m) = min

{
2m

k + 3m+ 1
,
1

2

}
.

(1.41)
Hence, using (1.39) and (1.41), we obtain that

Φ
′
(t) ≤ −1

8

∫
R
(|∂xu|2+x2m|u|2)dx− 1

8ϵ

∫
R
β(x)(f

′
)2|u|2dx− C

8ϵν(m)

∫
R
|u|2dx,

and combining the upper bound estimate in (1.8), we have

Φ
′
(t) ≤ −ηΦ(t), with η = min

{
1

6∥α∥L∞
,
1

6ϵ

∥∥∥∥γβ
∥∥∥∥−1

L∞
,

C

4ϵν(m)

}
= O(ϵ−ν(m)),
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which proves (1.30). The rest of the proof can be done as in the proof of
Theorem 1.2.3. Thus, we have

Σ(ϵ) ≥ C

ϵν(m)
, Ψ(ϵ) ≥ C

ϵν(m) log(2/
√
ϵ)
.

This completes the proof of Theorem 1.2.6.

1.4 Resolvent Estimates.

In this section, we prove Theorem 1.2.7 by using the localization techniques
and semiclassical subelliptic estimates. In particular, we remove the logarith-
mic term in (1.5) and give an optimal estimate for Ψ(ϵ). The proof patterns
after that of Proposition 4.1 of [6]. We estimate

κ(ϵ, λ) := ∥(Hϵ − iλ)−1∥, λ ∈ R, 0 < ϵ ≪ 1.

Under the Assumption 1.2.4, f has only a finite number of critical points.
We denote the set of critical values of f by

cv(f) = {f(x); x ∈ R, f ′
(x) = 0}.

Proposition 1.4.1. If f satisfies Assumption 1.2.4, then for any λ ∈ R and
0 < ϵ ≪ 1, the quantity κ(ϵ, λ) satisfies the following estimates :

(i) If dist(ϵλ, f(R)) ≥ δ > 0, then κ(ϵ, λ) ≤ ϵ/δ.

(ii) If dist(ϵλ, cv(f) ∪ {0}) ≥ δ > 0, then κ(ϵ, λ) ≤ Cδϵ
2/3.

(iii) If λ = λ(ϵ) is such that limϵ→0 ϵλ(ϵ) = α ∈ cv(f)\{0}, then

lim
ϵ→0

ϵ−1/2κ(ϵ, λ(ϵ)) ≤ C.

(iv) For λ = 0, the quantity κ(ϵ, 0) satisfies

κ(ϵ, 0) ≤


Cϵ

2m
k+2m , if 0 /∈ f(R),

Cϵmin{ 2m
k+2m

, 2
3}, if 0 ∈ f(R)\cv(f),

Cϵmin{ 2m
k+2m

, 1
2}, if 0 ∈ cv(f).

(v) There exists C > 1 such that, for all λ ∈ R and 0 < ϵ ≪ 1,

κ(ϵ, λ) ≤ Cϵν(m). where ν(m) = min

{
2m

k + 3m+ 1
,
1

2

}
.

For the proof of Proposition 1.4.1, we use the following localization scheme.
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1.4.1 The localization formula

Lemma 1.4.2. Let Q = −∆+ V in Rd, where V is a complex valued mea-
surable function. Let {χ2

j}j∈J , where χj ∈ C∞
0 (Rd,R) be such that∑

j∈J

χj(x)
2 = 1, for all x ∈ Rd, and

m2
1 := sup

x∈Rd

∑
j∈J

|∇χj(x)|2 < +∞, m2
2 := sup

x∈Rd

∑
j∈J

(∆χj(x))
2 < +∞. (1.42)

Then, the following estimates hold for any u ∈ C∞
0 (Rd)

2∥Qu∥2 + 3m2
2∥u∥2 + 8m2

1∥∇u∥2 ≥
∑
j∈J

∥Qχju∥2, (1.43)

in particular, if ℜV (x) ≥ 0,

2∥Qu∥2 + 3m2
2∥u∥2 + 8m2

1ℜ⟨Qu, u⟩L2 ≥
∑
j∈J

∥Qχju∥2, (1.44)

⟨Qu, u⟩L2 +m2
1∥u∥2 ≥

∑
j∈J

⟨Qχju, χju⟩L2 . (1.45)

Proof. For any χ ∈ C∞
0 (Rd,R), we have

Q∗χ2Q = Q∗χQχ+Q∗χ[χ,Q]

= χQ∗Qχ+ [Q∗, χ]Qχ+Q∗χ[χ,Q]

= χQ∗Qχ+ [Q∗, χ]χQ+Q∗χ[χ,Q] + [Q∗, χ][Q,χ]

= χQ∗Qχ− [∆, χ]χQ+Q∗χ[∆, χ] + [∆, χ][∆, χ].

Since

[∆, χ] = 2(∇χ) · ∇+ (∆χ) = 2∇ · (∇χ)− (∆χ),

we have

Q∗χ2Q = χQ∗Qχ−∇·(∇χ2)Q+(∆χ)χQ+Q∗(∇χ2) ·∇+Q∗χ(∆χ)−R∗
χRχ,

where Rχ = 2(∇χ)·∇+(∆χ). Applying this identity to χ = χj and summing
over j ∈ J , we have

22



23

Q∗Q =
∑
j∈J

χjQ
∗Qχj +

∑
j∈J

{(∆χj)χjQ+Q∗χj(∆χj)} −
∑
j∈J

R∗
χj
Rχj

.

Since

⟨(∆χj)χjQu+Q∗χj(∆χj)u, u⟩ ≥ −∥(∆χj)u∥2 − ∥χjQu∥2,
⟨−R∗

χj
Rχj

u, u⟩ ≥ −8∥(∇χj) · ∇u∥2 − 2∥(∆χj)u∥2,

we have

⟨Q∗Qu, u⟩ ≥
∑
j∈J

{
∥Qχju∥2 −

(
∥χjQu∥2 + ∥(∆χj)u∥2

)
−

(
8∥(∇χj) · ∇u∥2 + 2∥(∆χj)u∥2

)}
≥

∑
j∈J

∥Qχju∥2 − ∥Qu∥2 − 8m2
1∥∇u∥2 − 3m2

2∥u∥2.

This implies (1.43). In particular, if ℜV (x) ≥ 0, it is obvious that ℜ⟨Qu, u⟩ ≥
∥∇u∥2. Thus (1.44) follows by (1.43). Finally, we prove the inequality (1.45).
Since [χj, Q] = [∆, χj] = 2(∇χj) · ∇+ (∆χj), we have [χj, [χj, Q]] = (∇χ2

j) ·
∇ − 2|∇χj|2. Hence, ∑

j∈J

[χj, [χj, Q]] = −2
∑
j∈J

|∇χj|2. (1.46)

On the other hand, since [χj, [χj, Q]] = χ2
jQ+Qχ2

j − 2χjQχj, we have∑
j∈J

[χj, [χj, Q]] = 2Q− 2
∑
j∈J

χjQχj. (1.47)

Thus, it follows from (1.46) and (1.47) that

⟨Qu, u⟩+m2
1∥u∥2 ≥ ⟨Qu, u⟩+

⟨∑
j∈J

|∇χj|2u, u

⟩
=

∑
j∈J

⟨Qχju, χju⟩.

This completes the proof.

Using a dyadic partition of unity, we apply Lemma 1.4.2 to the one-
dimensional operator Q = Hϵ − iλ.
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Lemma 1.4.3. For j ∈ N, ϵ > 0 and λ ∈ R, we define unitary operators Uj,
j ∈ N by (Uju)(x) = 2j/2u(2jx) and transform Q by Uj

Pj,ϵ,λ = −2−2j∂2
x + 22mjx2m +

i

ϵ
f(2jx)− iλ,

and let

Cj(ϵ, λ) = inf{∥Pj,ϵ,λu∥;u ∈ C∞
0 (R), supp u ⊂ Kj, ∥u∥ = 1},

where K0 = [−1, 1] and Kj = [−1,−3/8] ∪ [1, 3/8] for any j > 0. Then
κ(ϵ, λ) = ∥(Hϵ − iλ)−1∥ satisfies(

inf
j∈N

Cj(ϵ, λ)

)−1

≤ κ(ϵ, λ) ≤ C

(
inf
j∈N

Cj(ϵ, λ)

)−1

(1.48)

for some constant C ≥ 1 independent of ϵ > 0, λ ∈ R.

Remark 1.4.4. It is clear that Cj(ϵ, λ) ≥ a0 for all j ∈ N, ϵ > 0, λ ∈ R,
because

a0∥u∥2 ≤ ℜ⟨Pj,ϵ,λu, u⟩ ≤ ∥Pj,ϵ,λu∥∥u∥, for all u ∈ C∞
0 (R).

Proof. We first prove the upper bound in (1.48). Let {χj}j∈N be a dyadic
partition of unity such that

∞∑
j=0

χj(x)
2 = χ0(x)

2 +
∞∑
j=1

χ̃
( x

2j

)
= 1

where χ0, χ1 ∈ C∞
0 (R) satisfy

χ0(x) =

{
1, if |x| ≤ 3

4
,

0, if |x| ≥ 1 ,
χ̃(x) =

{
1, if 1

2
≤ |x| ≤ 3

4
,

0, if |x| ≤ 3
8
or |x| ≥ 1 .

Then, it is obvious that

m2
1 = sup

x∈Rd

∑
j∈J

|∇χj(x)|2 < +∞, m2
2 = sup

x∈Rd

∑
j∈J

(∆χj(x))
2 < +∞.

Thus, we apply Lemma 1.4.2 to the one-dimensional operator Q = Hϵ − iλ.
Since a0∥u∥2 ≤ ℜ(Qu, u) ≤ ∥Qu∥∥u∥ ≤ ∥Qu∥

a0
for all u ∈ C∞

0 (R), it follows
from the localization formula (1.44) that
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C2∥Qu∥2 ≥
∞∑
j=0

∥Qχju∥2, where C2 = 2 +
8m2

1

a0
+

3m2
2

a20
.

For any j ∈ N, we define

vj(x) = 2j/2χj(2
jx)u(2jx), x ∈ R,

so that supp vj ⊂ suppχj(2
j·) ⊂ Kj and (Pj,ϵ,λvj)(x) = 2j/2(Qχju)(2

jx).
Then, we have

C2∥Qu∥2 ≥
∞∑
j=0

∥Pj,ϵ,λvj∥2 ≥
(
inf
j∈N

Cj(ϵ, λ)

)2 ∞∑
j=0

∥vj∥2

=

(
inf
j∈N

Cj(ϵ, λ)

)2 ∞∑
j=0

∥χju∥2 =
(
inf
j∈N

Cj(ϵ, λ)

)2

∥u∥2. (1.49)

Since Q = Hϵ − iλ and C∞
0 (R) is a core for Hϵ, it follows from (1.49)

that κ(ϵ, λ) = ∥(Hϵ − iλ)−1∥ ≤ C (infj∈N Cj(ϵ, λ))
−1. We next prove the

lower bound in (1.48). Define m(ϵ, λ) = infj∈N Cj(ϵ, λ). By the definition
of infimum, for any δ > 0, ϵ > 0, λ ∈ R, there exists vj ∈ C∞

0 (R) such
that vj ̸≡ 0, supp vj ⊂ Kj and ∥Pj,ϵ,λvj∥ < (m(ϵ, λ) + δ)∥vj∥. By setting
u(x) = 2−j/2vj(2

−jx), we find that ∥Qu∥ < (m(ϵ, λ) + δ)∥u∥. Thus, we have
κ(ϵ, λ) > (m(ϵ, λ) + δ). Since δ > 0 is arbitrary, we obtain the lower bound
in (1.48).

1.4.2 Proof of Proposition 1.4.1

We begin the proof of Proposition 1.4.1.
(i) If dist(ϵλ, f(R)) ≥ δ, then

|ℑ⟨(Hϵ − iλ)u, u⟩| =
∣∣∣∣⟨(f

ϵ
− λ

)
u, u

⟩∣∣∣∣ ≥ δ

ϵ
∥u∥2 for all u ∈ D,

and we obtain κ(ϵ, λ) ≤ ϵ/δ. Before we prove (ii), for f satisfying the As-
sumption 1.2.4, we define

Cf
def
= sup

j∈N
sup
x∈Kj

2kj|f(2jx)| < +∞,

where k > 0 is the parameter that governs the asymptotic behavior of f(x)
at infinity as in the Assumption 1.2.4.
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(ii) Suppose that dist(ϵλ, cv(f) ∪ {0}) ≥ δ. We also assume that ϵ|λ| ≤
∥f∥L∞+δ, because otherwise we can use the estimate (i). For any u ∈ C∞

0 (R)
with suppu ⊂ Kj and u ̸≡ 0, we have the lower bound

∥Pj,ϵ,λu∥
∥u∥

≥ |ℑ⟨Pj,ϵ,λu, u⟩|
∥u∥2

=

∣∣⟨[2kjf (2j·)− 2kjϵλ
]
u, u

⟩∣∣
ϵ2kj∥u∥2

≥ 1

ϵ

(
ϵ|λ| − Cf

2kj

)
.

Since ϵ|λ| ≥ δ, taking large enough J ∈ N such that 2kJ ≥ 2Cf/δ, we find that
Cj(ϵ, λ) ≥ δ/(2ϵ) for all j ≥ J . Thus, we only consider the case 0 ≤ j ≤ J
and the problem is reduced to finding a lower bound on ∥(Hϵ − iλ)u∥ when
u ∈ C∞

0 ({x ∈ R; |x| < Rδ}), for some Rδ > 0. On a bounded domain, we
can neglect the bounded term x2m in Hϵ and only consider the operator

Q = −∂2
x +

i

ϵ
(f(x)− ϵλ) .

Thus, our result is same as in the case m = 1 [6]. We take a partition of
unity θ0(x)

2 + θ1(x)
2 ≡ 1 such that θ0, θ1 ∈ C∞(R), supp θ0 ⊂ [−2, 2] and

supp θ1 ⊂ (−∞,−1] ∪ [1,+∞). Using these functions, for any σ > 0, we
define a new partition of unity as follows:

χ0(x)
2 + χ1(x)

2 ≡ 1, χj(x) = θj

(
f(x)− ϵλ

ϵσ

)
, j = 0, 1. (1.50)

Then, it is obvious that there exists C > 0 such that

m2
1 := sup

x∈R

1∑
j=0

|∇χj(x)|2 ≤ Cϵ−2σ, m2
2 := sup

x∈R

1∑
j=0

(∆χj(x))
2 ≤ Cϵ−4σ.

Thus, it follows from the localization formula (1.44) that

2∥Qu∥2 + 3C

ϵ4σ
∥u∥2 + 8C

ϵ2σ
∥Qu∥∥u∥ ≥ ∥Qχ0u∥2 + ∥Qχ1u∥2. (1.51)

We first estimate the second term of right hand side (1.51). Since suppχ1 is
contained in the set {x ∈ R; |f(x)− ϵλ| ≥ ϵσ}, we have

∥χ1u∥∥Qχ1u∥ ≥ 1

ϵ
|⟨(f(x)− ϵλ)χ1u, χ1u⟩| ≥ ϵσ−1∥χ1u∥2

and it follows that
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∥Qχ1u∥ ≥ ϵσ−1∥χ1u∥. (1.52)

We next estimate the first term of right hand side (1.51). Under the Assump-
tion 1.2.4, f has only a finite number of critical points. Thus, f−1(ϵλ) is a
finite set. We denote f−1(ϵλ) = {x1, · · ·, xn}. Since dist (ϵλ, cv(f) ∪ {0}) ≥
δ > 0 and suppχ0 is contained in the set {x ∈ R; |f(x)− ϵλ| ≤ 2ϵσ}, suppχ0

can be decomposed as follows:

suppχ0 =
n∑

j=1

Ij with Ij ∩ Ik = ∅ (j ̸= k), |Ij| = O(ϵσ),

where Ij is an interval centered at xj and |Ij| is the length of an interval Ij.
In particular, we can decompose χ0u as follows:

χ0u =
n∑

j=1

uj with suppuj ∩ suppuk = ∅, (j ̸= k).

Inside the interval Ij, the operator Q is well approximated by the operator

Qj = −∂2
x +

i

ϵ
f

′
(xj)(x− xj).

Indeed, using Taylor’s expansion of f around xj, we have

∥Quj∥2 ≥
1

2
∥Qjuj∥2 −

1

ϵ2
∥{f(x)− f(xj)− f

′
(xj)(x− xj)}uj∥2

≥ 1

2
∥Qjuj∥2 −

∥f ′′∥2L∞

4ϵ2
∥(x− xj)

2uj∥2

≥ 1

2
∥Qjuj∥2 − Cϵ4σ−2∥uj∥2. (1.53)

The operator Qj is unitary equivalent to the following micro local operator:

Q̃γ = γ
2
3 (−∂2

x ± ix), γ =
|f ′

(xj)|
ϵ

, (1.54)

which satisfies

∥Q̃γu∥ ≥ Cγ
2
3∥u∥. (1.55)

Indeed, the operator P = −∂2
x ± ix satisfies the following inequality:

∥Pu∥2 = ∥u′′∥2 + ∥xu∥2 ± 2ℑ⟨u′
, u⟩ ≥ 1

2
∥u′′∥2 + ∥xu∥2 − 3

2
∥u∥2.
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Thus, we find that P is invertible and P−1 is a compact operator which
implies (1.55). It follows from (1.53) and (1.55) that

∥Qχ0u∥2 =
n∑

j=1

∥Quj∥2 ≥ C(ϵ−4/3 − ϵ4σ−2)
n∑

j=1

∥uj∥2

= C(ϵ−4/3 − ϵ4σ−2)∥χ0u∥2.

Since σ > 0 is arbitrary, we take σ > 1/6 so that ϵ4σ−2 ≪ ϵ−4/3 for small
enough ϵ > 0. Then, we have

∥Qχ0u∥2 ≥ Cϵ−4/3∥χ0u∥2. (1.56)

Thus, it follows from (1.51), (1.52) and (1.56) that

∥Qu∥2 + 1

ϵ4σ
∥u∥2 ≥ Cmin{ϵ2σ−2, ϵ−4/3}∥u∥2.

Finally, taking σ < 1/3 so that ϵ−4σ ≪ ϵ−4/3 ≪ ϵ2σ−2, we have

∥Qu∥ ≥ Cϵ−2/3∥u∥,

which proves κ(ϵ, λ) ≤ Cϵ2/3. This completes the proof of (ii).
(iii) The assumption limϵ→0 ϵλ(ϵ) = α ∈ cv(f)\{0} implies that ϵ|λ| ≥ δ

for some fixed δ > 0 and small enough ϵ > 0. Thus, we can reduce the
analysis to a bounded domain as in (ii) and again our result is same as in
the case m = 1 [6]. Under the Assumption 1.2.4, f−1(α) is a finite set and
contains at least one critical point of f . However, in general, the set f−1(α)
contains non-critical points. Using a partition of unity, we treat the non-
critical points separately and their estimates can be done as in the case (ii).
To make the argument simple, we assume that f−1(α) consists of critical
points only. We consider two different cases, depending on how fast ϵλ(ϵ)
converges to α as ϵ → 0.

(A) We first consider the case:

ϵσ1 ≤ |ϵλ− α| ≤ ϵσ2 (1.57)

where 0 ≤ σ2 < σ1 < 1/2 and 3σ2 > 5σ1 − 1. If σ2 = 0, we assume that
ϵλ → α as ϵ → 0. We need to prove that

∥Qu∥ ≥ Cϵ−
1
2∥u∥ (1.58)

where Q = −∂2
x +

i
ϵ
(f(x)− ϵλ) as in (ii). We take σ > 0 such that
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σ1 < σ <
1

2
,
2σ1

3
+

1

6
< σ < −σ1

6
+

σ2

2
+

1

3
. (1.59)

We use again a partition of unity χ0(x)
2 + χ1(x)

2 ≡ 1 defined by (1.50). It
is obvious that suppχ0 and suppχ

′
1 are contained in the set {x ∈ R; |f(x)−

ϵλ| ≤ 2ϵσ}. Thus, by the assumption (1.57), for all x ∈ suppχ0 ∪ suppχ
′
1,

we have

ϵ
σ1
2

C2

≤ |f(x)− α| 12
C1

≤ |f ′
(x)| ≤ C1|f(x)− α|

1
2 ≤ C2ϵ

σ2
2 (1.60)

for some C1, C2 ≥ 1. Since,

χ
′

j(x) =
f

′
(x)

ϵσ
θ
′

j

(
f(x)− ϵλ

ϵσ

)
,

χ
′′

j (x) =
f

′′
(x)

ϵσ
θ
′

j

(
f(x)− ϵλ

ϵσ

)
+

(
f

′
(x)

ϵσ

)2

θ
′′

j

(
f(x)− ϵλ

ϵσ

)
, j = 0, 1,

there exists C > 0 such that

m2
1 = sup

x∈R

1∑
j=0

|∇χj(x)|2 ≤ Cϵσ2−2σ,

m2
2 = sup

x∈R

1∑
j=0

(∆χj(x))
2 ≤ C(ϵ−2σ + ϵ2σ2−4σ) ≤ Cϵ2σ2−4σ.

Thus, it follows from localization formula (1.44) that

∥Qu∥2 + ϵ2σ2−4σ∥u∥2 ≥ C
(
∥Qχ0u∥2 + ∥Qχ1u∥2

)
, (1.61)

for some C > 0. By (1.52), we have

∥Qχ1u∥ ≥ ϵσ−1∥χ1u∥. (1.62)

We estimate the first term of right hand side (1.61). We denote f−1(ϵλ) =
{x1, · · ·, xn} and decompose χ0u =

∑n
j=1 uj as in the case of (ii). We remark

that there exists C > 0 such that

suppuj ⊂ {x ∈ R; |x− xj| ≤ Cϵσ−
σ1
2 }. (1.63)

Indeed, for x ∈ suppuj, we have
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ϵ
σ1
2

C2

|x− xj| ≤ |x− xj| inf
x∈suppuj

|f ′
(x)| ≤ |f(x)− ϵλ| ≤ 2ϵσ,

here, we used (1.60). Thus, using estimates (1.53), (1.55), (1.60) and (1.63),
we have for small enough ϵ > 0,

∥Quj∥2 ≥ C

{
|f ′

(xj)|
4
3

ϵ
4
3

∥uj∥2 −
1

ϵ2
∥(x− xj)

2uj∥2
}

≥ C
{
ϵ
2σ1
3

− 4
3 − ϵ4σ−2σ1−2

}
∥uj∥2 ≥ Cϵ

2σ1
3

− 4
3∥uj∥2.

Summing over j, we obtain that

∥Qχ0u∥2 ≥ Cϵ
2σ1
3

− 4
3∥χ0u∥2. (1.64)

It follows from (1.61), (1.62) and (1.64) that

∥Qu∥2 + ϵ2σ2−4σ∥u∥2 ≥ Cmin
{
ϵ2σ−2, ϵ

2σ1
3

− 4
3

}
∥u∥2,

for some C > 0. By our choice of σ > 0 (1.59), for small enough ϵ > 0, we

have ϵ2σ2−4σ ≪ ϵ
2σ1
3

− 4
3 ≪ ϵ2σ−2 and it follows that

∥Qu∥2 ≥ Cϵ
2σ1
3

− 4
3∥u∥2 ≥ Cϵ−1∥u∥2,

which proves (1.58).
(B) We next consider the case:

|ϵλ− α| ≤ ϵσ for some
1

3
< σ <

1

2
.

Then, as before, for all x ∈ suppχ0 ∪ suppχ1, we have |f ′
(x)| ≤ Cϵ

σ
2 and

m2
1 = sup

x∈R

1∑
j=0

|∇χj(x)|2 ≤ Cϵ−σ, m2
2 = sup

x∈R

1∑
j=0

(∆χj(x))
2 ≤ Cϵ−2σ.

Thus, it follows from (1.52) and the localization formula (1.44) that

∥Qu∥2 + ϵ−2σ∥u∥2 ≥ C(∥Qχ0u∥2 + ϵ2(σ−1)∥χ1u∥2).

Since ϵ−2σ ≪ ϵ−1 ≪ ϵ2σ−2 for small enough ϵ > 0, it suffice to show that
∥Qχ0u∥2 ≥ Cϵ−1∥χ0u∥2. Inside the support of uj, the operator Q is well
approximated by the operator
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Qj := −∂2
x +

i

ϵ

{
f

′′
(xj)

2
(x− xj)

2 − (ϵλ− α)

}
.

We note that |x − xj| ≤ Cϵ
σ
2 for some C > 0 and all x ∈ suppuj. Thus,

using Taylor’s expansion of f around xj, it follows that

∥Quj∥2 ≥
1

2
∥Qjuj∥2 −

1

ϵ2

∥∥∥∥{f(x)− f(xj)−
f

′′
(xj)

2
(x− xj)

2

}
uj

∥∥∥∥2

≥ 1

2
∥Qjuj∥2 −

∥f ′′′∥2L∞

36ϵ2
∥(x− xj)

3uj∥2

≥ 1

2
∥Qjuj∥2 − Cϵ3σ−2∥uj∥2. (1.65)

The operator Qj is unitary equivalent to the following micro local operator:

γ
1
2 (−∂2

x ± ix2 − iµ) where γ =
|f ′′

(xj)|
2ϵ

and µ =
ϵλ− α

ϵγ
1
2

.

We use the following fact which will be proved in Lemma 1.6.2 (Appendix).
For any u ∈ C∞

0 (R) and sufficiently small ϵ > 0,

∥(−∂2
x ± ix2 − iµ)u∥ ≥ ∥u∥.

Since ϵ3σ−2 ≪ ϵ−1, it follows from (1.65) that ∥Quj∥2 ≥ C∥uj∥2. Thus,
summing over j, we obtain

∥Qχ0u∥2 ≥ C∥χ0u∥2.

(C) Take σ0
1 = 11

30
∈
(
1
3
, 1
2

)
. For any n ∈ N, we define

σn
2 = σn+1

1 =
11

6
σn
1 − 1

3
.

It is obvious that σn
2 < σn

1 for all n ∈ N and limn→∞ σn
1 = −∞. Let n0 be

the smallest integer such that σn
2 ≤ 0. Then, for any n ≤ n0,

σn
1 <

1

2
, σn

2 < σn
1 , 3σn

2 < 5σn
1 − 1.

Applying the argument (A) to all intervals [max{0, σn
2 }, σn

1 ], n = 0, · · ·, n0, we

obtain that ∥(Hϵ− iλ)u∥ ≥ Cϵ−1/2∥u∥ when λ ∈ R satisfies |ϵλ(ϵ)−α| ≥ ϵ
11
30 .

Thus,

|ϵλ(ϵ)− α| ≥ ϵ
11
30 =⇒ lim

ϵ→0
ϵ−

1
2κ(ϵ, λ) ≤ C.
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On the other hand, applying the argument (B) to σ = 11
30
, we obtain that

|ϵλ(ϵ)− α| ≤ ϵ
11
30 =⇒ lim

ϵ→0
ϵ−

1
2κ(ϵ, λ) ≤ C.

This completes the proof of (iii).
(iv) We consider the operator

Pj,ϵ,0 = −2−2j∂2
x + 22mjx2m +

i

ϵ
f(2jϵ).

Then, for any j ≥ 1 and u ∈ C∞
0 (R) with supp u ⊂ Kj = {x ∈ R; 3

8
≤ |x| ≤

1}, we have

∥u∥∥Pj,ϵ,0u∥ ≥ |ℜ⟨Pj,ϵ,0u, u⟩| ≥ 22mj

∫
Kj

|x|2m|u(x)|2dx ≥ 32m22(j−3)m∥u∥2,

∥u∥∥Pj,ϵ,0u∥ ≥ |ℑ⟨Pj,ϵ,0u, u⟩| ≥
1

ϵ2kj

∫
Kj

2kj|f(2jx)||u(x)|2dx ≥ mj

ϵ2kj
∥u∥2,

where mj(x) = inf{2kj|f(2jx)|; 3
8
≤ |x| ≤ 1}. From the Assumption 1.2.4,

we find that limj→∞mj = 1. Taking large enough J ∈ N, we find that

Cj(ϵ, 0) ≥ C

(
2mj +

1

ϵ2kj

)
≥ Cϵ−

2m
k+2m , for all j ≥ J.

Since 0 ≤ j ≤ J corresponds to a bounded spatial domain, we can treated
as in (ii) and (iii). Hence, we find that

∥Hϵu∥ ≥ Cϵ−σ∥u∥, where σ =


1, if 0 /∈ f(R),
2
3
, if 0 ∈ f(R)\cv(f),

1
2
, if 0 ∈ cv(f).

Consequently, we obtain that κ(ϵ, 0) ≤ Cϵmin{ 2m
k+2m

,σ}.
(v) By virtue of (1.48) Lemma 1.4.3, it suffice to show that

Cj(ϵ, λ) ≥ Cϵ−min{ 2m
k+3m+1

, 1
2}, for all j ∈ N, 0 < ϵ ≪ 1 and λ ∈ R. (1.66)

As in (ii), (iii), we have Cj(ϵ, λ) ≥ CJϵ
−1/2 for 0 ≤ j ≤ J . Hence,

we need only consider the case j > J . We take ũ ∈ C∞
0 (R) such that

supp ũ ⊂ Kj =
{
x ∈ R; 3

8
≤ |x| ≤ 1

}
, ∥ũ∥ = 1 and ∥Pj,ϵ,λũ∥ ≤ 2Cj(ϵ, λ). As

in (iv), we easily find that
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∥Pj,ϵ,λũ∥ ≥ C22mj, ∥Pj,ϵ,λũ∥ ≥
infx∈Kj

|gj(x)|
ϵ2kj

, (1.67)

where

gj(x) = 2kjf(2jx)− 2kjϵλ.

If 2j ≥ ϵ−
1

k+3m+1 , the first inequality of (1.67) implies (1.66). If 2j < ϵ−
1

k+3m+1 ,
we integrate by parts and obtain the following relation:

∥Pj,ϵ,λũ∥2+C22(m−1)j∥xm−1ũ∥2 = ∥Qj,ϵ,λũ∥2+22(m−1)j+1∥xm∂xũ∥2+24mj∥x2mũ∥2,

where Qj,ϵ,λ = Pj,ϵ,λ − 22mjx2m. Thus, we have ∥Pj,ϵ,λũ∥ ≥ ∥Qj,ϵ,λũ∥ −
C2(m−1)j. Combining this estimate with (1.67), we obtain

2Cj(ϵ, λ) ≥ ∥Pj,ϵ,λũ∥ ≥ C

3

(
22mj +

infx∈Kj
|gj(x)|

ϵ2kj
+ ∥Qj,ϵ,λũ∥ − 2(m−1)j

)
.

(1.68)
As is proved by [6], for any u ∈ C∞

0 (R) with supp u ⊂ Kj,

∥Qj,ϵ,λu∥ ≥ Ch2/3

ϵ2kj
∥u∥, where h2/3 = ϵ1/32(k−2)j/3 = O

(
ϵ

m+1
k+3m+1

)
.

Returning to (1.68), we find that

Cj(ϵ, λ) ≥ C

(
22mj +

h2/3

ϵ2kj
− 2(m−1)j

)
≥ Cϵ

−2m
k+3m+1 ,

which proves (1.66).

1.4.3 Proof of Theorem 1.2.7

According to (v) in Proposition 1.4.1, it is clear that

Ψ(ϵ) =

(
sup
λ∈R

κ(ϵ, λ)

)−1

≥ C−1ϵ−ν(m).

Since Σ(ϵ) ≥ Ψ(ϵ), we find that Σ(ϵ) ≥ C−1ϵ−ν(m). Hence, we need only
prove the upper bound Ψ(ϵ) ≤ Cϵ−ν(m).

We first consider the case k > m − 1. Fix 0 < ϵ ≪ 1 and 3/8 < x0 < 1.
We define j ∈ N, λ ∈ R and h > 0 as follows:
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2j−1 < ϵ−
1

k+3m+1 ≤ 2j, h2 = ϵ2(k−2)j, ϵλ = f(2jx0).

We take v ∈ C∞
0 (R) such that ∥v∥ = 1 and supp v ⊂ [−1, 1]. We define

uh(x) =
1

h1/3
v

(
x− x0

h2/3

)
, x ∈ R. (1.69)

Then, it is obvious that uh ∈ C∞
0 (R), ∥uh∥ = 1 and suppuh ⊂ Kj for

sufficiently small h > 0. Recalling that

Pj,ϵ,λ =
1

ϵ2kj
(
−h2∂2

x + h2/3x2m + igj(x)
)
where gj(x) = 2kjf(2jx)− 2kjϵλ,

we find that there exists C > 0 independent of j, ϵ, λ such that

∥Pj,ϵ,λuh∥ ≤ C
h2/3

ϵ2kj
= Cϵ−

2m
k+3m+1 . (1.70)

This implies that Cj(ϵ, λ) ≤ Cϵ−
2m

k+3m+1 and κ(ϵ, λ) ≥ Cϵ
2m

k+3m+1 by virtue of
(1.48) Lemma 1.4.3. Thus, we have

Ψ(ϵ) ≤ Cϵ−
2m

k+3m+1 . (1.71)

It is straightforward to verify (1.70). Using (1.69), we find that ∥h2∂2
xuh∥ =

h2/3∥v′′∥. Since x2m ≤ x2m
0 +2m|x−x0| for all x ∈ Kj, we have ∥x2muh∥ ≤ C.

By our choice of λ, gj(x0) = 0 and

|gj(x)| ≤ |x− x0| sup
3
8
≤|x|≤1

|g′

j(x)| ≤ C|x− x0|,

where C does not depend on j by the Assumption 1.2.4. Thus, we have
∥gjuh∥ ≤ Ch2/3 and the proof of (1.70) is complete.

We next consider the case k ≤ m− 1. Let x0 be a critical point of f . We
assume without loss of generality that x0 = 0. We define

λ =
f(0)

ϵ
, g(x) = f(x)− ϵλ.

We take v ∈ C∞
0 (R) such that ∥v∥ = 1 and supp v ⊂ [−1, 1] and define

uϵ(x) =
1

ϵ1/8
v
( x

ϵ1/4

)
.

Using Taylor’s expansion of g around x0 = 0, we find that
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∥(Hϵ − iλ)uϵ∥ ≤ ∥u′′

ϵ ∥+ ∥x2muϵ∥+ ϵ−1∥guϵ∥

= Cϵ−1/2 + C + C∥x2uϵ∥+O
(∫

suppuϵ

x6|uϵ(x)|2dx
)1/2

≤ Cϵ−1/2.

Hence, C−1ϵ1/2 ≤ supλ∈R ∥(Hϵ − iλ)−1∥ and we obtain that

Ψ(ϵ) ≤ Cϵ−1/2. (1.72)

Thus, it follows from (1.71) and (1.72) that

Ψ(ϵ) ≤ Cϵ−min{ 2m
k+3m+1

, 1
2}.

This completes the proof of Theorem 1.2.7.

1.5 Spectral lower bounds-Proof of Theorem

1.2.9.

In this section, we prove Theorem 1.2.9. I. Gallagher, T. Gallay and F.
Nier [6] have proved Theorem 1.2.9 for the case m = 1, by using a complex
deformation method and the same localization techniques as in the proof of
Proposition 1.4.1. They also use accurate numerical computations to show
that the lower bound in Theorem 1.2.9 is optimal when m = 1, in the sense
that the exponent ν

′
(m) cannot be improved. Our proof for the general case

patterns after that of Theorem 1.9 of [6].

1.5.1 Proof of Theorem 1.2.9

To prove Theorem 1.2.9, we use the following Lemma which will be proved
later.

Lemma 1.5.1. There exists C0, C1 > 0 such that for any 0 < ϵ ≪ 1,

σ(Hϵ) ∩ {z ∈ C;C0ℜz ≤ |ℑz| ≤ C1

ϵ
} = ∅.

We begin the proof of Theorem 1.2.9. We now omit the proof of this
lemma and proceed the proof of Theorem 1.2.9. By virtue of Proposition
1.4.1, for any λ ∈ R such that |λ| ≥ C1ϵ

−1, we have κ(ϵ, λ) = ∥(Hϵ−iλ)−1∥ ≤
Cϵ

1
2 for some C > 0. Since
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1

dist(iµ, σ(Hϵ))
≤ ∥(Hϵ − iµ)−1∥, for any µ ∈ R, (1.73)

it follows that

ℜz ≥ C

ϵ1/2
, for any z ∈ σ(Hϵ) ∩

{
z ∈ C; |ℑz| ≥ C1

ϵ

}
. (1.74)

We next consider the domain

σ(Hϵ) ∩
{
z ∈ C; |ℑz| ≤ C1

ϵ

}
By virtue of Lemma 1.5.1, we need only consider the domain

σ(Hϵ) ∩
{
z ∈ C; |ℑz| ≤ 1

ϵν
′
(m)

}
, where ν

′
(m) = min

{
2m

k + 2m
,
1

2

}
.

Thus, we take any λ ∈ R such that |λ| ≤ ϵ−ν
′
(m), and estimate κ(ϵ, λ) =

∥(Hϵ − iλ)−1∥ as in the proof of Proposition 1.4.1. By the definition of
Cj(ϵ, λ) as in Lemma 1.4.3, there exists u ∈ C∞

0 (R) such that suppu ⊂ Kj =
{x ∈ R; 3

8
≤ |x| ≤ 1}, ∥u∥ = 1 and ∥Pj,ϵ,λ∥ ≤ 2Cj(ϵ, λ). As in the proof of

(iv) of Proposition 1.4.1, we have

∥Pj,ϵ,λ∥ ≥ 32m22(j−3)m,

∥Pj,ϵ,λ∥ ≥ 1

ϵ2kj
inf
x∈Kj

|gj(x)|, where gj(x) = 2kjf(2jx)− 2kjϵλ.

Hence, we find that for all j ∈ N

Cj(ϵ, λ) ≥
1

2

{
32m22(j−3)m +

1

ϵ2kj
inf
x∈Kj

|gj(x)|
}
.

If j is finite, by virtue of Proposition 1.4.1, we have Cj(ϵ, λ) ≥ Cϵ−
1
2 and it

follows that Cj(ϵ, λ) ≥ Cϵ−ν
′
(m). Thus, it suffice to consider the case j ∈ N

is large enough. By the Assumption 1.2.4, if j ∈ N is large enough, there
exists C ≥ 1 such that

1

C|x|k
≤ 2kjf(2jx) ≤ C

|x|k
, for all x ∈ Kj = {x ∈ R;

3

8
≤ |x| ≤ 1}.
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If 2kjϵ|λ| ≤ 3
8
, then infx∈Kj

|gj|(x) ≥ 5
8
and we find that

Cj(ϵ, λ) ≥ C

{
22mj +

1

ϵ2kj

}
≥ Cϵ−

2m
k+2m ≥ Cϵ−ν

′
(m).

On the other hand, if 2kjϵ|λ| > 3
8
and |λ| ≤ ϵ−ν

′
(m), then it is obvious that

Cj(ϵ, λ) ≥
1

2
32m22(j−3)m ≥ Cϵ−ν

′
(m).

Hence, for any λ ∈ R such that |λ| ≤ ϵ−ν
′
(m), we have Cj(ϵ, λ) ≥ Cϵ−ν

′
(m)

for all j ∈ N, and it follows that

κ(ϵ, λ)−1 ≥ C inf
j∈N

Cj(ϵ, λ) ≥ Cϵ−ν
′
(m).

Using again (1.73), we find that

ℜz ≥ C

ϵν
′
(m)

, for all z ∈ σ(Hϵ) ∩
{
z ∈ C; |ℑz| ≤ 1

ϵν
′
(m)

}
. (1.75)

Thus, it follows from (1.74) and (1.75) that

Σ(ϵ) ≥ C

ϵν
′ (m)

, where ν
′
(m) = min

{
2m

k + 2m
,
1

2

}
.

This completes the proof of Theorem 1.2.9 and it remains to prove Lemma
1.5.1.

1.5.2 Proof of Lemma 1.5.1

To prove Lemma 1.5.1, we use a complex deformation method using the
dilation group (Uθϕ)(x) = eθ/2ϕ(eθx), which are unitary operators when θ ∈
R. If f is given by f(x) = (1+x2)−k/2, the multiplication operator (i/ϵ)f(x)
is a dilation analytic perturbation of H∞ = −∂2

x + x2m. According to the
dilation analytic theory ([4]), when we define the operator Hϵ(θ) by

Hϵ(θ) = UθHϵU
−1
θ = −e−2θ∂2

x + e2mθx2m +
i

ϵ

1

(1 + e2θx2)k/2
,

for S = {θ ∈ C; |ℑ(θ)| ≤ π/4m}, the spectrum of Hϵ(θ) does not depend on
θ ∈ S.

Let θ = itk and tk = π
4m(k+2)

. We note that the operator Hϵ(itk) is
maximal accretive. Indeed, for any x, y ∈ R, we have
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e−2itkx2 + e2mitky2 ∈ {z ∈ C;−2tk ≤ argz ≤ 2mtk} ⊂ {z ∈ C;ℜz ≥ 0},
i

ϵ

(1 + e−2itkx2)k/2

|1 + e2itkx2|k
∈ {z ∈ C;

π

2
− ktk ≤ arg ≤ π

2
} ⊂ {z ∈ C;ℜz ≥ 0},

and it follows that

ℜ⟨Hϵ(itk)u, u⟩ ≥ 0, for any u ∈ D.

We take a partition of unity χ0(x)
2+χ1(x)

2 ≡ 1 such that suppχ0 ⊂ (−1, 1)
and χ0(x) = 1 on [−1/2, 1/2], Then, it is obvious that

m2
1 = sup

x∈Rd

∑
j∈J

|∇χj(x)|2 < +∞, m2
2 = sup

x∈Rd

∑
j∈J

(∆χj(x))
2 < +∞,

and we apply the localization formula (1.44) to the operator Q = Hϵ(itk)−iλ.
Then, we have

∥(Hϵ(itk)− iλ)ϕ∥2+∥ϕ∥2 ≥ C{∥(Hϵ(itk)− iλ)χ0ϕ∥2+∥(Hϵ(itk)− iλ)χ1ϕ∥2}.
(1.76)

We estimate the right hand side of (1.76) respectively.
(i) We estimate the first term in the right hand side (1.76). Define u0 =

χ0u, then we have

∥u0∥∥(Hϵ(itk)− iλ)u0∥
≥ |ℑ⟨(Hϵ(itk)− iλ)u0, u0⟩|

≥ 1

ϵ
ℜ⟨(f(eitkx)− ϵλ)u0, u0⟩ − sin(2tk)∥u

′

0∥2

≥ 1

ϵ
inf
|x|≤1

{ℜf(eitkx)− ϵλ}∥u0∥2 − tan(2tk)∥u0∥∥(Hϵ(itk)− iλ)u0∥.

Here, in the third inequality, we used the fact that for any u ∈ D,

∥u′∥ ≤ 1

cos(2tk)
ℜ⟨(Hϵ(itk)− iλ)u, u⟩ ≤ 1

cos(2tk)
∥(Hϵ(itk)− iλ)u∥∥u∥.

Since |1 + e2itk | ≤ 1 for |x| ≤ 1 and −ktk ≤ argf(eitkx) ≤ 0, we have

ℜ{f(eitkx)} ≥ |f(eitkx)|ℜ(e−iktk) ≥ 2−k/2cos(ktk) ≥ 2−(k+1)/2, for |x| ≤ 1.
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Thus, if we assume that ϵ|λ| ≤ l0 := 2−(k+2)/2, we have

2∥(Hϵ(itk)− iλ)u0∥ ≥ (1 + tan(2tk))∥(Hϵ(itk)− iλ)u0∥

≥ 1

ϵ
inf
|x|≤1

{ℜf(eitkx)− ϵλ}∥u0∥

≥ l1
ϵ
∥u0∥ (1.77)

where l1 := 2−(k+1)/2 − l0.
(ii) We next estimate the second term in the right hand side (1.76). Define

u1 = χ1u, then we have

∥(Hϵ(itk)− iλ)u1∥
∥u1∥

≥
∣∣∣∣⟨Hϵ(itk)u1, u1⟩

∥u1∥2
− iλ

∣∣∣∣ ≥ inf
z∈Sk

|z − iλ|

where Sk is arbitrary sector in the complex plane which contain the quantity

⟨Hϵ(itk)u1, u1⟩ = e−2itk∥u1∥2+e2mitk∥xmu1∥2+
ei(

π
2
−ktk)

ϵ

⟨
(e2itk + x2)k/2

|1 + e2itkx2|k
u1, u1

⟩
.

We now define the sector Sk as follows:

Sk = {z ∈ C;−2tk ≤ arg z ≤ π

2
−k(tk−δk)}, where δk =

1

2
arg

(
e2itk +

1

4

)
.

Then, we find that ⟨Hϵ(itk)u1, u1⟩ ∈ Sk. Indeed, if we set

z1 = e−2itk∥u1∥2 + e2mitk∥xmu1∥2,

z2 =
ei(

π
2
−ktk)

ϵ

⟨
(e2itk + x2)k/2

|1 + e2itkx2|k
u1, u1

⟩
,

then, it is obvious that −2tk < arg z1 < 2mtk. On the other hand, we have

max
|x|≥ 1

2

arg
(
e2itk + x2

)
= arg

(
e2itk +

1

4

)
= δk,

π

2
>

π

2
− k(tk − δk) >

π

2
− ktk =

kπ(2m− 1) + 4mπ

4m(k + 2)
> 2mtk,
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it follows that 2mtk < arg z2 <
π
2
−k(tk−δk). Thus, −2tk < arg⟨Hϵ(itk)u1, u1⟩ <

π
2
−k(tk−δk) and ⟨Hϵ(itk)u1, u1⟩ ∈ Sk. Since infz∈Sk

|z− iλ| = ck|λ| for some
ck, we have

∥(Hϵ(itk)− iλ)u1∥ ≥ ck|λ|∥u1∥. (1.78)

Combining (1.76), (1.77) and (1.78), and using the fact that ∥(Hϵ(itk) −
iλ)∥ ≥ a0cos(2mtk), we obtain that there exists C1 > 0 such that for any
λ ∈ R satisfies ϵ|λ| ≤ l0,

∥(Hϵ(itk)− iλ)u∥ ≥ Cmin

{
l1
2ϵ
, ck|λ|

}
∥u∥ ≥ 2|λ|

C1

∥u∥. (1.79)

Thus, for any z = µ+ iλ with 0 < C1µ ≤ |λ| ≤ l0ϵ
−1, we have

∥(Hϵ(itk)− z)−1∥ ≤ ∥(Hϵ(itk)− iλ)−1∥
1− µ∥(Hϵ(itk)− iλ)−1∥

≤
C1

2|λ|

1− µ C1

2|λ|
≤ C1

|λ|
,

and z /∈ σ(Hϵ(itk)) ≡ σ(Hϵ). This completes the proof of Lemma 1.5.1.

1.6 Appendix

In this appendix, we prove Lemma 1.2.2, Lemma 1.2.5, and give Lemma
1.6.1 and Lemma 1.6.2 which were used in the proof of Theorem 1.2.6 and
Proposition 1.4.1 (iii) respectively.

1.6.1 Proof of Lemma 1.2.2

Let A be a maximal accretive operator in a Hilbert spaceX. Suppose that the
numerical range Θ(A) is contained in a sector Sα = {z ∈ C; | arg z| ≤ π

2
−2α}

for some 0 < α ≤ π/4.
(i) Suppose that ∥e−tA∥ ≤ Ce−µt for all t ≥ 0. Then, by virtue of the

representation of the resolvent

(A− z)−1 =

∫ ∞

0

e−tAetzdt, (1.80)

we find that the set {z ∈ C;ℜz < µ} is contained in a resolvent set ρ(A).
Thus, we have Σ ≥ µ. Setting z = iλ, λ ∈ R in (1.80) and using the fact that
e−tA is an infinitesimal C0-semigroup, we have
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∥(A− iλ)−1∥ ≤
∫ ∞

0

∥e−tA∥dt ≤
∫ ∞

0

min
{
1, Ce−µt

}
=

logC + 1

µ
.

Taking the supremum over λ ∈ R, we thus have

Ψ ≥ µ

1 + logC
.

(ii) We define the line segment in a complex plane as follows:

Γ0(µ, α) =
{
z ∈ C;ℜz = µ, | arg z| ≤ π

2
− α

}
,

Γ±(µ, α) =
{
z ∈ C;ℜz ≥ µ, arg z = ±

(π
2
− α

)}
,

Γ(µ, α) = Γ−(µ, α) ∪ Γ0(µ, α) ∪ Γ+(µ, α).

We use the inverse Laplace formula

e−tA =
1

2πi

∫
Γ(µ,α)

(A− z)−1e−tzdz,

where 0 < µ < Σ. Since ℜz = µ on the Γ0(µ, α), we have

∥∥∥∥∫
Γ0(µ,α)

(A− z)−1e−ztdz

∥∥∥∥ ≤ N(A, µ)e−µt|Γ0(µ, α)| = N(A, µ)e−µt 2µ

tan 2α
,

(1.81)
where N(A, µ) = supℜz=µ ∥(A − z)−1∥ and |Γ0(µ, α)| is the length of a line
segment Γ0(µ, α). On the Γ+(µ, α), z ∈ Γ+(µ, α) can be written as z =
x+ (ix/ tanα) with x ≥ µ. Since Θ(A) ⊂ Sα, we have

∥(A− z)−1∥ ≤ 1

dist(z,Θ(A))
≤ 1

dist(z, Sα)
=

1

x
.

Thus, we have

∥∥∥∥∫
Γ+(µ,α)

(A− z)−1e−tzdz

∥∥∥∥ ≤
∫ ∞

µ

e−tx

x

(
1 +

1

tan2 α

) 1
2

dx

≤ 1

µtsinα

∫ ∞

µt

e−xdx =
e−µt

µtsinα
. (1.82)

Similarly, on the Γ−(µ, α), we have
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∥∥∥∥∫
Γ−(µ,α)

(A− z)−1e−tzdz

∥∥∥∥ ≤ e−µt

µtsinα
. (1.83)

Using the fact that ∥e−tA∥ ≤ 1 < 1/sinα and combining the estimates (1.81),
(1.82) and (1.83), we have

∥e−tA∥ ≤ µ

π tanα
N(A, µ)e−µt +

1

πsinα
min

{
π,

e−µt

µt

}
≤ 1

π

{
µ

tanα
N(A, µ) +

2π

sinα

}
e−µt.

(iii) Suppose that 0 < µ < Ψ. Since µ∥(A − iλ)−1∥ ≤ µΨ−1 < 1 for any
λ ∈ R, we have,

∥(A−µ−iλ)−1∥ ≤ ∥
(
I − (A− iλ)−1

)−1 ∥∥(A−iλ)−1∥ ≤ Ψ−1

1− µΨ−1
=

1

Ψ− µ
.

Thus, N(A, µ) ≤ (Ψ− µ)−1. This completes the proof of Lemma 1.2.2.

1.6.2 Proof of Lemma 1.2.5

Let V (x, ϵ) = x2m + f
′
(x)2

ϵ2
. By virtue of the Min-Max principle, it suffice to

show that there exists C ≥ 1 such that for any ϕ ∈ D, 0 < ϵ ≪ 1,

⟨Ĥϵϕ, ϕ⟩ =
∫
R
(|∂xϕ|2 + V (x, ϵ)|ϕ|2)dx ≥ ∥ϕ∥2

Cϵ2ρ(m)
, (1.84)

and

⟨Ĥϵϕϵ, ϕϵ⟩ ≤
C

ϵ2ρ(m)
∥ϕϵ∥2 for some ϕϵ ∈ C∞

0 (R) ⊂ D. (1.85)

We first prove (1.84). Under the Assumption 1.2.4, there exists L > 0 such
that

f
′
(x)2 ≥ k2

2|x|2(k+1)
for |x| ≥ L,

and f has only a finite number of critical points: {x1, · · ·, xN}. We take a
partition of unity

∑N
j=0 χ

2
j = 1 such that χj ∈ C∞(R), suppχ0 ⊂ (−∞,−L)∪

(L,+∞) and f has exactly one critical point in suppχj for 1 ≤ j ≤ N .

Applying the IMS localization formula (1.45) to the operator Q = Ĥϵ, we
find that there exists C > 0 such that
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∫
R
(|∂xϕ|2+V (x, ϵ)|ϕ|2)dx+C∥ϕ∥2 ≥

N∑
j=0

∫
R
(|∂xϕj|2+V (x, ϵ)|ϕj|2)dx, (1.86)

with ϕj = χjϕ. By the mean value theorem, for any 1 ≤ j ≤ N , there exists
cj > 0 such that for any x ∈ suppχj,

V (x, ϵ) ≥ f
′
(x)2

ϵ2
≥ c2j

(x− xj)
2

ϵ2
.

Hence, we have ⟨Ĥϵϕj, ϕj⟩ ≥ cjϵ
−1∥ϕj∥2 for all 1 ≤ j ≤ N . Since

V (x, ϵ) ≥ x2m +
k2

2ϵ2x2(k+1)
≥ c0ϵ

− 2m
k+m+1

for all x ∈ suppχ0, it is obvious that ⟨Ĥϵϕ0, ϕ0⟩ ≥ c0ϵ
− 2m

k+m+1∥ϕ0∥2. Thus, we
have

⟨Ĥϵϕj, ϕj⟩ ≥ c0ϵ
− 2m

k+m+1∥ϕ0∥2 + ϵ−1

N∑
j=1

cj∥ϕj∥2, (1.87)

and (1.84) follows from (1.86) and (1.87). It remains to prove the upper
bound (1.85). We first consider the case k ≤ m − 1. Let x0 be a critical
point of f . We assume without loss of generality that x0 = 0. Take ϕ ∈
C∞

0 (−1, 1) such that ∥ϕ∥ = 1 and define ϕϵ(x) = ϵ−1/4ϕ(ϵ−1/2x). Using
Taylor’s expansion of f around x0 = 0, we find that

⟨Ĥϵϕϵ, ϕϵ⟩ = ∥ϕ′

ϵ∥2 + ∥xmϕϵ∥2 + ϵ−2

∫
suppϕϵ

f
′
(x)2|ϕϵ(x)|2dx

= Cϵ−1 + C + ϵ−2O
(∫

suppϕϵ

x2|ϕϵ(x)|2dx
)

≤ Cϵ−1. (1.88)

We next consider the case k > m− 1. Take ϕ ∈ C∞
0 (1, 2) such that ∥ϕ∥ = 1

and define ϕϵ(x) = ϵ
1

2(k+m+1)ϕ(ϵ
1

k+m+1x). Then, we have

⟨Ĥϵϕϵ, ϕϵ⟩ ≤ Cϵ−
2m

k+m+1 . (1.89)

Thus, (1.85) follows from (1.88) and (1.89).
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1.6.3 Proof of Lemma 1.6.1

Lemma 1.6.1. Let β : R → R+ be the function defined by (1.28). Then,
there exists C > 0 such that for any ϕ ∈ D, 0 < ϵ ≪ 1,

∫
R

(
|∂xϕ|2 + x2m|ϕ|2 + β(x)f

′
(x)2

ϵ
|ϕ|2

)
dx ≥ C

ϵν(m)
∥ϕ∥2, ν(m) = min

{
2m

k + 3m+ 1
,
1

2

}
.

(1.90)

Proof. We assume that A > 0 is large enough so that all critical points of f
are contained in [−A+ 1, A+ 1]. Then, we have

f
′
(x)2 ≥ k2

2|x|2(K+1)
, |x| ≥ A.

Let W (x, ϵ) = x2m + β(x)f
′
(x)2

ϵ
. Using a same partition of unity as in the

proof of Lemma 1.2.5, and applying the IMS localization formula (1.45) to
the operator −∂2

x + V (x, ϵ), there exists C > 0 such that

∫
R

(
|∂xϕ|2 +W (x, ϵ)|ϕ|2

)
dx+ C∥ϕ∥2 ≥

N∑
j=0

∫
R

(
|∂xϕj|2 +W (x, ϵ)|ϕj|2

)
dx

(1.91)
with ϕj = χϕ. By the mean value theorem, for any 1 ≤ j ≤ N , there exists
cj > 0 such that for any x ∈ suppχj,

W (x, ϵ) ≥ β0
f

′
(x)2

ϵ
≥ c2j

(x− xj)
2

ϵ
.

Hence, for all 1 ≤ j ≤ N , we have∫
R

(
|∂xϕj|2 +W (x, ϵ)|ϕj|2

)
dx ≥ cjϵ

−1/2∥ϕj∥2. (1.92)

Since

W (x, ϵ) ≥ x2m+
β0k

2

2Ak−m+1ϵ|x|k+m+1
≥ Cϵ−

2m
k+3m+1 , for A ≤ |x| ≤ Bϵ := Aϵ−

1
k+3m+1

and

W (x, ϵ) ≥ x2m +
β0ϵ

− k−m+1
k+3m+1k2

2ϵ|x|2(k+1)
≥ Cϵ−

2m
k+3m+1 , for |x| ≥ Bϵ,
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it is obvious that∫
R

(
|∂xϕ0|2 +W (x, ϵ)|ϕ0|2

)
dx ≥ c0ϵ

− 2m
k+3m+1∥ϕ0∥2. (1.93)

Thus, (1.90) follows from (1.91), (1.92) and (1.93).

1.6.4 Proof of Lemma 1.6.2

Lemma 1.6.2. For any u ∈ C∞
0 (R) and sufficiently small ϵ > 0,

∥(−∂2
x ± ix2 − iµ)u∥ ≥ ∥u∥.

Proof. We set P = −∂2
x ± i(x2 − µ). We note that if ϵ > 0 is sufficiently

small, |µ| is very large. Hence, we may assume |µ| ≫ 1. Since

∥Pu∥∥u∥ ≥ |ℑ⟨Pu, u⟩| ≥
∣∣∣∣∫

R
(x2 − µ)|u(x)|2

∣∣∣∣ ,
if µ is negative, it is obvious that ∥Pu∥ ≥ |µ|∥u∥ ≥ ∥u∥. Thus, we need only
consider the case µ ≫ 1. We take a partition of unity

∑4
j=0 θj(x) ≡ 1 such

that θj ∈ C∞(R) and

supp θ0 ⊂
{
x ∈ R;−1

2
≤ x ≤ 1

2

}
,

supp θ1 ⊂
{
x ∈ R;

1

4
≤ x ≤ 3

}
,

supp θ2 ⊂ {x ∈ R;x ≥ 2} ,

supp θ3 ⊂
{
x ∈ R;−3 ≤ x ≤ −1

4

}
,

supp θ4 ⊂ {x ∈ R;x ≤ −2} .

Using these functions, we define a new partition of unity as follows:

4∑
j=0

χj(x) ≡ 1, χj(x) = θj

(
x

µ
1
2 + µ

1
4

)
, j = 0, 1, 2, 3, 4.

Then, it is obvious that there exists C > 0 (µ independent) such that

m2
1 = sup

x∈Rd

4∑
j=0

|∇χj(x)|2 ≤ Cµ− 1
2 , m2

2 = sup
x∈Rd

4∑
j=0

(∆χj(x))
2 ≤ Cµ−1.

45



46

Thus, it follows from the localization formula (1.44) that

∥Pu∥2 + 1

µ
∥u∥2 ≥ C

4∑
j=0

∥Pχju∥2. (1.94)

Set uj = χju. Since

suppχ0 ⊂

{
x ∈ R; |x| ≤ µ

1
2 + µ

1
4

2

}
,

suppχ1 ⊂

{
x ∈ R;

µ
1
2 + µ

1
4

4
≤ x ≤ 3(µ

1
2 + µ

1
4 )

}
,

suppχ2 ⊂
{
x ∈ R; x ≥ 2(µ

1
2 + µ

1
4 )
}
,

we have

∥Pu0∥∥u0∥ ≥ |ℑ⟨Pu0, u0⟩| =
∫
R
(µ− x2)|u0(x)|2dx ≥ µ∥u0∥2, (1.95)

∥Pu1∥∥u1∥ ≥
∫ 3(µ

1
2+µ

1
4 )

µ
1
2+µ

1
2 +µ

1
4

4

(x2 − µ)|u1(x)|2dx ≥ µ∥u1∥2, (1.96)

∥Pu2∥∥u2∥ ≥
∫ ∞

2(µ
1
2+µ

1
4 )

(x2 − µ)|u2(x)|2dx ≥ µ∥u2∥2. (1.97)

Similarly, we obtain that

∥Pu3∥ ≥ µ∥u3∥, ∥Pu4∥ ≥ µ∥u4∥. (1.98)

It follows from (1.94), (1.95), (1.96), (1.97) and (1.98) that

∥Pu∥ ≥ µ∥u∥ ≥ ∥u∥.

This completes the proof of Lemma 1.6.2.
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Chapter 2

Schödinger equations with
time-independent strong
magnetic fields.

2.1 Introduction

We consider time-dependent Schrödinger equations

i∂tu = H(t)u(t) ≡ −∇2
A(t)u+ V (t, x)u, ∇A(t) = ∇− iA(t, x) (2.1)

in the Hilbert space H = L2(Rd) of square integrable functions, where
A(t, x) = (A1(t, x), . . . , Ad(t, x)) ∈ Rd and V (t, x) ∈ R are respectively mag-
netic vector and electric scalar potentials. We study the existence and the
uniqueness of unitary propagators for Eqn. (2.1).

In accordance with the requirement of quantum mechanics we say that
a function u(t, x) of (t, x) ∈ R × Rd is a solution of (2.1) if it satisfies the
following properties:

(1) u(t, ·) is a continuous function of t ∈ R with values in H and ∥u(t, ·)∥L2

is independent of t ∈ R.

(2) u(t, x) satisfies Eqn. (2.1) in the sense of distributions.

Suppose that there exists a dense subspace Σ ⊂ H such that, for every
s ∈ R and φ ∈ Σ, Eqn. (2.1) admits a unique solution u(t, x) which satisfies
the initial condition u(s, x) = φ(x) and that u(t, ·) ∈ Σ for every t ∈ R. Then
the solution operator Σ ∋ φ 7→ u(t, ·) extends to a unitary operator U(t, s)
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in H and the two parameter family of operators {U(t, s) : −∞ < t, s < ∞}
satisfies the following properties:

(a) U(t, s) is unitary and (t, s) 7→ U(t, s) ∈ B(H) is strongly continuous.

(b) U(t, s)U(s, r) = U(t, r) and U(t, t) = 1 for every −∞ < t, s, r < ∞.

(c) U(t, s)Σ = Σ and, for every φ ∈ Σ, u(t, x) = (U(t, s)φ)(x) satisfies
Eqn. (2.1) in the sense of distributions.

Definition 2.1.1. We say a two parameter family of operators {U(t, s) : −
∞ < t, s < ∞} is a unitary propagator for (2.1) on a dense set Σ if it satisfies
properties (a), (b) and (c) above.

Thus, the existence of a unique unitary propagator on a dense subspace
of H implies that Schrödinger equation (2.1) generates a unique quantum
dynamics on H. When A and V are t-independent, it is well known that
the existence of a unique unitary propagator on H is equivalent to the es-
sential selfadjointness of Hamiltonian −∇2

A + V on C∞
0 (Rd). The problem

of essential selfadjointness has long and extensively been studied by many
authors and it has an extensive literature. We record here following two the-
orems, Theorem 2.1.2 of Leinfelder and Simader([15]) and Theorem 2.1.3 of
Iwatsuka([7]) which are relevant to the present work. We need some nota-
tion: (1 + |x|2)1/2 = ⟨x⟩; Lp = Lp(Rd), 1 ≤ p ≤ ∞ are Lebesgue spaces and
Lp
loc = Lp

loc(Rd) are their localizations; ∥u∥p is the norm of Lp, ∥u∥ = ∥u∥2
and (u, v) is the inner product of u, v ∈ H. A function W (x) is said to be of
Stummel class if it satisfies the property that

lim
ε→0

sup
x∈Rd

∫
|x−y|<ε

|W (y)|2

|x− y|d−4
dy = 0, (2.2)

where |x − y|4−d should be replaced by | log |x − y|| if d = 4 and by 1 if
1 ≤ d ≤ 3.

Theorem 2.1.2. Let A ∈ L4
loc and ∇ · A ∈ L2

loc. Let V = V1 + V2 with
V1 ∈ L2

loc and V2 of Stummel class. Suppose that, for a constant C∗ > 0,

V1(x) ≥ −C∗⟨x⟩2. (2.3)

Then, H = −∇2
A + V is essentially selfadjoint on C∞

0 (Rd).

It can be easily seen that conditions in Theorem 2.1.2 are also necessary
as far as smoothness is concerned. However, condition (2.3) on on V at
infinity can be substantially relaxed if the magnetic field B(x) = (Bjk(x))
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produced by A,, Bjk = ∂jAk − ∂kAj, ∂j = ∂/∂xj, grows rapidly at infinity.
We define

|B(x)| =
(∑

j<k

|Bjk(x)|2
) 1

2
.

Theorem 2.1.3. Let ρ(r) be a continuous function of r ≥ 0 such that∫ ∞

0

ρ(r)−1dr = ∞.

Suppose that A and V are C∞ and they satisfy that, for constants Cα,

|∂α
xB(x)| ≤ Cαρ(|x|)|α|(|B(x)|+ 1), |α| = 1, 2; (2.4)

|B(x)|+ V (x) ≥ −ρ(|x|)2. (2.5)

Then, H = −∇2
A + V is essentially selfadjoint on C∞

0 (Rd).

We remark that, by virtue of condition (2.4), magnetic fields which behave

too wildly at infinity, e.g. |B(x)| ≥ C exp(⟨x⟩2+ε) or |B(x)| = Ccos(e⟨x⟩
2+ε

)
for some C > 0 and ε > 0, are excluded in Theorem 2.1.3. To the best
knowledge of authors, it is unknown whether or not Theorem 2.1.3 remains
true without this condition.

We now state main results of this paper. We want to remark beforehand
that, by virtue of assumptions on time derivatives, A(t, x) and V (t, x) in fol-
lowing theorems may be considered as perturbations of time frozen potentials
A(t0, x) and V (t0, x) respectively, t0 being chosen arbitrarily.

Definition 2.1.4. M(Rd) is the space of real valued functions Q(x) of class
C1(Rd) which satisfy for a positive constant C > 0 that

Q(x) ≥ C⟨x⟩ and |∇Q(x)| ≤ C⟨x⟩Q(x). (2.6)

For Q ∈ M(Rd), −∆ + Q(x)2 is essentially selfadjoint on C∞
0 (Rd) (see

Theorem 2.1.2) and hereafter LQ will denote its unique selfadjoint extension.
LQ ≥ −∆+ C2x2 and LQ is positive definite; we have

D(LQ) = {u ∈ H : ∆u, Q∇u, Q2u ∈ H}, (2.7)

C−1∥LQu∥ ≤ ∥∆u∥+ ∥Q∇u∥+ ∥Q2u∥ ≤ C∥LQu∥, u ∈ D(LQ) (2.8)

for a constant C > 0 (see the proof of Lemma 2.4.1).
For Banach spaces X and Y , B(X ,Y) is the Banach space of bounded

operators from X to Y and B(X ) = B(X ,X ). We say f(t, x) is of class
Cα(Rd

x) if it is of class C
α with respect to variables x ∈ Rd. Multiplication
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operators by V (t, ·), A(t, ·) and etc. are denoted by V (t), A(t) and etc.
respectively; Ȧ(t, x) = ∂tA(t, x) and V̇ (t, x) = ∂tV (t, x) are time derivatives.
The letter C denotes various constants whose exact values are not important
and they may differ at each occurrence.

First two theorems, Theorems 2.1.5 and 2.1.6, may respectively be thought
of as time dependent versions of Theorem 2.1.2 and its form version. I is
an interval. Under the assumption of Theorem 2.1.5, operators H0(t) =
−∇2

A(t) +V (t, x)+C(t)⟨x⟩2 and H(t) = −∇2
A(t) +V (t, x) are essentially self-

adjoint on C∞
0 (Rd) by virtue of Theorem 2.1.2. We denote their selfadjoint

extensions again by H0(t) and H(t).

Theorem 2.1.5. Suppose A and V satisfy following conditions:

(1) A(t, ·) ∈ L4
loc and ∇x · A(t, ·) ∈ L2

loc for all t ∈ I.

(2) V = V1 + V2 with V1 and V2 such that V1(t, ·) ∈ L2
loc for t ∈ I and

V2(t, ·) of Stummel class uniformly for t ∈ I. There exist a continuous
function C(t) and Q(x) ∈ M(Rd) such that

V1(t, x) + C(t)⟨x⟩2 ≥ Q(x)2, (t, x) ∈ I × Rd. (2.9)

(3) For a.e. x ∈ Rd, A(t, x) and V (t, x) are absolutely continuous (AC for
short in what follows) with respect to t ∈ I and multiplication operators
in H by following functions are all LQ-bounded uniformly for t ∈ I:

V̇ (t, x), ∇x · Ȧ(t, x), Ȧ(t, x)2, ∂xj
{(Ȧ(t, x)2)}, j = 1, . . . , d.

Then, following statements are satisfied:

(a) H0(t) has t-independent domain D such that D ⊂ D(H(t)). We equip
D with the graph norm of H0(t0), t0 ∈ I being arbitrary.

(b) There uniquely exists a unitary propagator {U(t, s) : t, s ∈ I} for (2.1)
on H with following properties: U(t, s) ∈ B(D); for φ ∈ D, U(t, s)φ is
continuous in Σ with respect to (t, s), of class C1 in H and it satisfies

i∂tU(t, s)φ = H(t)U(t, s)φ, i∂sU(t, s)φ = −U(t, s)H(s)φ. (2.10)

A remark on condition (2.9) which corresponds to (2.3) of Theorem 2.1.2
is in order since they look differently from each other. As was mentioned
above we are considering Eqn. (2.1) when A(t, x) and V (t, x) satisfy condi-
tions of Theorem 2.1.2 for every fixed t ∈ R, in particular, that
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V1(t, x) ≥ −C∗(t)⟨x⟩2 (2.11)

for a continuous C∗(t). Then, if we choose C(t) = C∗(t)+C, V1(t, x) satisfies
(2.9) with Q(x)2 = C⟨x⟩2 ∈ M(Rd), C being an arbitrarily large constant.
However, this is the worst case conceivable and V1(t, x) may rapidly grow
to positive infinity as |x| → ∞, in which case V1(t, x) certainly satisfies
(2.11). If V1(t, x) increases the faster as |x| → ∞, then Q(x) of (2.9) may
be taken the larger, condition (3) becomes the less restrictive and the class
of potentials accommodated by the theorem becomes the wider. Condition
(2.9) is formulated for studying these cases simultaneously. Similar remark
applies to conditions (2.13), (2.23) and (2.24) in following theorems.

When V is spatially more singular than in Theorem 2.1.5, we use quadratic
form formalism. The following is a form version of Theorem 2.1.5. A function
W (t, x) is said to be of Kato class uniformly for t ∈ I, if

lim
ε→0

sup
t∈I,x∈Rd

∫
|x−y|<ε

|W (t, y)|
|x− y|d−2

dy = 0, (2.12)

where |x−y|2−d should be replaced by | log |x−y|| if d = 2 and by 1 if d = 1.
We write q(u, u) = q(u) for quadratic forms q(u, v).

Theorem 2.1.6. Suppose that A and V satisfy following conditions:

(1) A(t, ·) ∈ L2
loc for every t ∈ I.

(2) V (t, x) = V1(t, x) + V2(t, x) with V1 such that V1(t, ·) ∈ L1
loc(Rd

x) for
all t ∈ I and V2(t, ·) of Kato class uniformly for t ∈ I. There exist a
continuous function C(t) and Q ∈ M(Rd) such that

V1(t, x) + C(t)⟨x⟩2 ≥ Q(x)2, t ∈ I. (2.13)

(3) A and V are AC with respect to t for a.e. x ∈ Rd and

∥Ȧ(t)L−1/2
Q ∥B(L2) + ∥L−1/2

Q V̇ (t)L
−1/2
Q ∥B(L2) ≤ C, t ∈ I (2.14)

for a constant C > 0.

Then, following statements are satisfied:

(a) The quadratic form q0(t) defined on C∞
0 (Rd) by

q0(t)(u) =

∫
Rd

(|∇A(t)u|2 + (V (t, x) + C(t)⟨x⟩2)|u|2)dx
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is strictly positive and closable; the closure [q0(t)] has domain Y inde-

pendent of t ∈ I and Y ⊂ D(L
1
2
Q). We equip Y with the inner product

[q0(t0)](u, v) by choosing t0 arbitrarily and denote by X its dual space
with respect to the inner product of H. We have H(t) = −∇2

A(t)+V (t) ∈
B(Y ,X ) and t → H(t) ∈ B(Y ,X ) is norm continuous.

(b) There uniquely exists a unitary propagator for (2.1) on Y with following
properties: U(t, s) ∈ B(Y); for φ ∈ Y, U(t, s)φ is continuous in Y with
respect to (t, s), of class C1 in X and satisfies equations (2.10).

Before stating time dependent versions of Theorem 2.1.3, we generalize it
for V (x) which are locally as singular as those in Theorem 2.1.2 or in Theorem
2.1.6 by slightly strengthening conditions (2.4) and (2.5) at infinity.

Theorem 2.1.7. Let A be of class C3 and the magnetic field B generated by
A satisfy for constants Cα that

|∂α
xB(x)| ≤ Cα⟨x⟩|α|(|B(x)|+ 1), |α| = 1, 2. (2.15)

Let V (x) = V1(x) + V2(x) with V1 ∈ L2
loc and V2 of Stummel class. Suppose

that there exist constants θ < 1 and C∗ > 0 such that

θ|B(x)|+ V1(x) ≥ −C∗⟨x⟩2, x ∈ Rd. (2.16)

Then, L = −∇2
A+V is essentially selfadjoint on C∞

0 (Rd) and the domain of
its selfadjoint extension H is given by D(H) = {u ∈ H : −∇2

Au+ V u ∈ H}.

Theorem 2.1.8. Let A(x) and B(x) be as in Theorem 2.1.7. Let V (x) =
V1(x) + V2(x) with V1 ∈ L1

loc(Rd
x) and V2 of Kato class. Suppose that there

exist constants θ < 1 and C∗ such that (2.16) is satisfied. Define

Ṽ1(x) = V1(x) + (C∗ + C1)⟨x⟩2 (2.17)

with a sufficiently large constant C1. Then, following statements are satisfied:

(1) The quadratic form q0 on C∞
0 (Rd) defined by

q0(u) = ∥∇Au∥2 + ((Ṽ1 + V2)u, u) (2.18)

is bounded from below and closable. The closure has domain

D([q0]) = {u ∈ L2 : ∇Au ∈ L2, (|B|+ |Ṽ1|+ ⟨x⟩2)1/2u ∈ L2}. (2.19)

For u ∈ D([q0]), we have V2|u|2 ∈ L1 and [q0](u) is given by (2.18).
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(2) The selfadjoint operator H0 defined by [q0] is given by

H0u = −∇2
Au+ (Ṽ1 + V2)u, (2.20)

D(H0) = {u ∈ D([q0]), −∇2
Au+ (Ṽ1 + V2)u ∈ L2}. (2.21)

Suppose that A and V satisfy conditions of Theorem 2.1.7, then they also
satisfy those of Theorem 2.1.8, and the operator H0 defined in Theorem 2.1.8
is essentially selfadjoint on C∞

0 (Rd) and D(H0) = {u ∈ L2 : (−∇2
A + Ṽ1 +

V2)u ∈ L2}. This follows from the fact that selfadjoint operators admit no
proper selfadjoint extensions.

Theorems 2.1.9 and 2.1.10 in what follows are time dependent versions of
Theorems 2.1.7 and 2.1.8 respectively. Under assumptions of Theorem 2.1.9

H(t) = −∇2
A(t) + V (t, x) and H0(t) = −∇2

A(t) + V (t, x) + (C(t) + C1)⟨x⟩2

are essentially selfadjoint on C∞
0 (Rd) by virtue of Theorem 2.1.7. We denote

their selfadjoint extensions again by H(t) and H0(t).

Theorem 2.1.9. Suppose that A and V satisfy following conditions:

(1) A(t, x) ∈ C3(Rd
x) for all t ∈ I and the magnetic field B(t, x) generated

by A(t, x) satisfies, for constants Cα > 0,

|∂α
xB(t, x)| ≤ Cα⟨x⟩|α|⟨B(t, x)⟩, |α| = 1, 2, (t, x) ∈ I × Rd. (2.22)

(2) V (t, x) = V1(t, x) + V2(t, x) with V1(t, ·) ∈ L2
loc(Rd

x) for all t ∈ I and
V2(t, ·) of Stummel class uniformly with respect to t ∈ I. There exist a
constant θ < 1, a continuous function C(t) and Q ∈ M(Rd) such that

θ|B(t, x)|+ V1(t, x) + C(t)⟨x⟩2 ≥ Q(x)2, (t, x) ∈ I × Rd. (2.23)

(3) For a.e. x ∈ Rd, A(t, x) and V (t, x) are AC with respect to t ∈ I. Time
derivatives satisfy, for a constant C > 0, that

|∇x · Ȧ(t, x)|+ |Ȧ(t, x)|2 + |∇x(Ȧ(t, x)
2)| ≤ CQ(x)2, (t, x) ∈ I × Rd;

and that V̇ (t, x) = W0(t, x) +W1(t, x) +W2(t, x) such that

∥Q−2+jWj(t)(−∆+ 1)−j/2∥B(H) ≤ C, t ∈ I, j = 0, 1, 2.

Then, following statements are satisfied for a sufficiently large C1 > 0:
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(a) Domain D of H0(t) is independent of t ∈ I and D ⊂ D(H(t)) for all
t ∈ I. Equip D with the graph norm of H0(t0), t0 being arbitrarily.

(b) There uniquely exists a unitary propagator {U(t, s) : t, s ∈ I} on H for
(2.1) such that U(t, s) ∈ B(D); for φ ∈ D, U(t, s)φ is continuous with
respect to (t, s) in D, of class C1 in H and satisfies (2.10).

Theorem 2.1.10. Let A(t, x) and B(t, x) be as in Theorem 2.1.9. Suppose

(1) V (t, x) = V1(t, x) + V2(t, x) with V1(t, ·) ∈ L1
loc(Rd

x) for all t ∈ I and
V2(t, ·) of Kato class uniformly with respect to t ∈ I. There exist a
θ < 1, a continuous function C(t) and Q ∈ M(Rd) such that

θ|B(t, x)|+ V1(t, x) + C(t)⟨x⟩2 ≥ Q(x)2, (t, x) ∈ I × Rd. (2.24)

(2) V (t, x) is AC with respect to t ∈ I for a.e. x ∈ Rd and V̇ (t, x) satisfies,
for a constant C > 0,

∥L−1/2
Q |V̇ (t)|L−1/2

Q ∥B(L2) ≤ C, t ∈ I. (2.25)

Let Ṽ = V +(C(t)+C1)⟨x⟩2 and Ṽ1 = V1+(C(t)+C1)⟨x⟩2 for a sufficiently
large constant C1 > 0. Then, following statements are satisfied.

(a) The quadratic form q0(t) on C∞
0 (Rd) defined by

q0(t)(u) = ∥∇A(t)u∥2 + (Ṽ (t, x)u, u) (2.26)

is bounded from below and closable. Domain Y of its closure [q0(t)]
is given by (2.19) with obvious changes. Y is independent of t and

satisfies Y ⊂ D(L
1
2
Q). We equip Y with the inner product [q0(t0)](u, v),

t0 ∈ I being arbitrarily and denote by X its dual space with respect to
the inner product of H. For t ∈ I, define operator H(t) from Y to X
by

(H(t)u, v) = (∇A(t)u,∇A(t)v) + (V (t, x)u, v), u, v ∈ Y .

Then, H(t) ∈ B(Y ,X ) and it is norm continuous with respect to t ∈ I.

(b) There uniquely exists a unitary propagator for (2.1) on Y such that
U(t, s) ∈ B(Y); for φ ∈ Y, U(t, s)φ is continuous with respect to (t, s)
in Y, of class C1 in X and satisfies (2.10). Moreover, {U(t, s)} extends
to a strongly continuous family of bounded operators in X .
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We emphasize that in all theorems above no conditions are imposed on
the behavior at infinity of the positive part of V in contrast to strong size
restrictions on its negative part.

For the reference on the problem, we refer to the introduction of [28]
and we shall jump into the proof of Theorems immediately. We shall not
prove Theorems 2.1.5 and 2.1.6 because they are proved in [28] for the case
Q(x) = C⟨x⟩ and the proof goes through for the present cases with obvious
changes, and because the proof of Theorems 2.1.9 and 2.1.10 which we shall
be devoted to in what follows basically patterns after that of [28], though
several new estimates are necessary.

The plan of paper is as follows. Section 2.2 collects some well known
results which are necessary in subsequent sections. We prove selfadjointness
theorems, Theorems 2.1.7 and 2.1.8 in Section 2.3. In Section 2.4, we formu-
late and prove an estimate for the resolvent of H1(t) = −∇2

A(t) + V1(t, x) +

(C(t) + C1)⟨x⟩2 which replaces the diamagnetic inequality (cf. [5]). We em-
phasize that it is hopeless to have standard diamagnetic inequality for this
operator since the scalar potential W (t, x) = V1(t, x) + (C(t) + C1)⟨x⟩2 of
H1(t) can wildly diverge to negative infinity as |x| → ∞ and −∆+W (t, x)
is not in general essentially selfadjoint on C∞

0 (Rd). We prove Theorems 2.1.9
and 2.1.10 in Section 2.5 and 2.6 respectively by using materials prepared in
preceding sections.

2.2 Preliminaries

In this section, we recall Kato’s abstract theory of evolution equations which
the proof of Theorems will eventually relies upon, and Iwatsuka’s identity
which will be used for deriving various estimates necessary for applying
Kato’s theory.

2.2.1 Kato’s abstract theory for evolution equations

As in the previous paper [28], Theorems 2.1.9 and 2.1.10 will be proven by
applying the following abstract theorem. The theorem is the consequence of
Theorem 5.2, Remarks 5.3 and 5.4 of Kato’s seminal paper [9].

Theorem 2.2.1. Let X and Y be a pair of Hilbert spaces such that Y ⊂ X
continuously and densely. Let {A(t), t ∈ I}, I being an interval, be a family
of closed operators in X with dense domain D(A(t)) such that Y ⊂ D(A(t))
for every t ∈ I and I ∋ t → A(t) ∈ B(Y ,X ) is norm continuous. Suppose
that following conditions are satisfied:

55



56

(1) For every t ∈ I, there exist inner products (·, ·)Xt and (·, ·)Yt of X and
Y respectively which define norms equivalent to the original ones and
which satisfy, for a constant c > 0,

∥u∥Yt/∥u∥Ys ≤ ec|t−s|, ∥u∥Xt/∥u∥Xs ≤ ec|t−s|, u ̸= 0. (2.27)

(2) If we let Xt and Yt be Hilbert spaces X and Y with these inner prod-
ucts, A(t) is selfadjoint in Xt and the part Ã(t) of A(t) in Yt is also
selfadjoint in Yt.

Then, there uniquely exists a strongly continuous family of bounded operators
{U(t, s) : t, s ∈ I} in X that satisfies

(a) U(t, r) = U(t, s)U(s, r), U(s, s) = I for every t, s and r ∈ I.

(b) U(t, s) ∈ B(Y); for φ ∈ Y, U(t, s)φ is continuous with respect to (t, s)
in Y, of class C1 in X and it satisfies

∂tU(t, s)φ = −iA(t)U(t, s)φ, ∂sU(t, s)φ = iU(t, s)A(s)φ. (2.28)

2.2.2 Iwatsuka’s Identity

In [7], Iwatsuka has found an ingenious formula which rewrites Schrödinger
operatorH = −∇2

A+V in the form of elliptic operators in which the magnetic
field Bjk = ∂jAk − ∂kAj appears explicitly, which he has used for proving
Theorem 2.1.3. We recall it here as we shall use it several times for deriving
various estimates. For the proof of following lemmas we refer to Iwatsuka’s
paper [7], formula (2.12) and proofs of Theorem 1.1 and Theorem 2.1 therein.
We denote b · a = tba for a vector b and a matrix a.

Lemma 2.2.2. Let G(x) = {Gjk} be Hermitian matrix valued function and

Gjk = αjk + iβjk, for real valued αjk = αkj and βjk = −βkj, j, k = 1, . . . , d;

F (x) = {Fj} be complex vector field such that with real A and complex b

F (x) = A(x) + b(x) (2.29)

and B(x) = {Bjk}, Bjk = ∂jAk−∂kAj. Then, we have the following identity:

−∇F ·G∇F = −∇A · α∇A + i{2ℜ(b ·G)− (∇ · β)}∇A

−
∑
j<k

βjkBjk + i∇ · (Gb) + b ·Gb. (2.30)
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In particular, if αjk = δjk, Kronecker’s delta and

Gjk = δjk + iβjk and b = 1
2
∇ · β (2.31)

for a real valued skew-symmetric matrix {βjk}, then

−∇2
A = −∇F ·G∇F +

∑
j<k

βjkBjk +R, (2.32)

R = 1
2

∑
j,k

βjk∂jbk +
1
4
b2. (2.33)

Real skew-symmetric β in (2.31) is completely arbitrary for identity (2.32)
and Iwatsuka’s choice in [7] is as follows: Take χ ∈ C∞([0,∞)) such that
χ(r) = 1 for 0 ≤ r ≤ 1/2, χ(r) = r−1 for r ≥ 1 and

0 < rχ(r) ≤ 1 for all r > 0

and define

β(x) = χ(|B(x)|)B(x). (2.34)

In what follows, β(x) always denotes the function defined by (2.34) and b(x)
and R(x) are respectively defined by (2.31) and (2.33) by using this β(x). We
write

|∂B| =
∑

|α|=1,j<k

|∂αBjk| and |∂2B| =
∑

|α|=2,j<k

|∂αBjk|.

Lemma 2.2.3. Suppose A(x) and B(x) satisfy (2.15). Then:

|β(x)| ≤ 1,
∑
j<k

βjkBjk = χ(|B|)|B|2 ≥ |B| − 1, (2.35)

|∂α
xβ| ≤ C⟨x⟩|α|, |α| = 1, 2; |b| ≤ C⟨x⟩, |R| ≤ C⟨x⟩2. (2.36)

For real skew-symmetric β̃ = (β̃jk), we have (Proposition 4.1 of [7]) that

−|β̃| ≤ iβ̃ ≤ |β̃|, |β̃| =
(∑

j<k

β̃2
jk

) 1
2

(2.37)

in the sense of quadratic forms on Cd. In what follows we shall use identity
(2.32) by modifying β(x) of (2.34) in various ways.
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2.3 Selfadjointness

We prove Theorems 2.1.7 and 2.1.8 in this section. We take and fix φ ∈
C∞

0 (Rd) such that 0 ≤ φ(x) ≤ 1 for all x ∈ Rd,

φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for |x| ≥ 2. (2.38)

We set φn(x) = φ(x/n) for n = 1, 2, . . . and define for 0 < θ ≤ 1

βn,θ(x) = θφn(x)β(x). (2.39)

The following lemma is obvious by virtue of (2.37).

Lemma 2.3.1. If we change β by βn,θ(x), then (2.32) remains to hold with
G, b and R being replaced by corresponding Gn,θ, bn,θ, Rn,θ. Matrix Gn,θ

satisfies
Gn,θ(x) = 1+ iθφn(x)β(x) ≥ 1− θ, x ∈ Rd; (2.40)

and bn,θ and Rn,θ satisfy corresponding estimates in (2.36) uniformly with
respect to θ and n.

Proof of Theorem 2.1.7 The following is a modification of Kato’s argu-
ment ([13]). It suffices to show that the image of L ± i, R(L ± i), is dense
in H. Thus we suppose that f ∈ H satisfies f ⊥ R(L ± i) and show f = 0
then. We prove the + case only. The proof for the other case is similar.

We first assume V2 = 0. Define, for n = 1, 2, . . . , Vn(x) = χB2n(0)(x)V (x),
where B2n(0) = {x ∈ Rd : |x| < 2n} and χF is the characteristic function of
the set F , and

Ln = −∇2
A + Vn, D(Ln) = C∞

0 (Rd).

Since Vn(x) is bounded from below, Ln is essentially selfadjoint by virtue of
Theorem 2.1.2. It follows that there exists un ∈ C∞

0 (Rd) such that

∥(Ln + i)un − f∥ ≤ 1/n, n = 1, 2, . . . . (2.41)

Then, ∥(Ln + i)un∥ ≤ ∥f∥+ 1/n and

∥un∥ ≤ ∥(Ln + i)un∥ ≤ C, ∥Lnun∥ ≤ ∥f∥+ ∥un∥+ 1/n ≤ C. (2.42)

Let φn(x) be as above. Then, φn(x)Vn(x) = φn(x)V (x) and

φn(x)(Ln + i)un = (L+ i)φnun + 2(∇φn)∇Aun + (∆φn)un.

It follows from (2.41) that

∥f∥2 = lim
n→∞

(φnf, (Ln + i)un) = lim
n→∞

(f, φn(Ln + i)un)
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= lim
n→∞

{(f, (L+ i)φnun) + 2(f, (∇φn)∇Aun) + (f, (∆φn)un)}. (2.43)

The first term on the right vanishes by the assumption and the third satisfies

|(f, (∆φn)un)| ≤ n−2∥∆φ∥∞∥f∥∥un∥ → 0 (n → ∞).

For estimating ∥∇Aun∥, we use Iwatsuka’s identity (2.32) with β2n,θ defined
by (2.39) with 2n replacing n, which produces

Ln = −∇2
A + Vn = −∇F2n,θ

G2n,θ∇F2n,θ
+W2n,θ, (2.44)

F2n,θ = A+ b2n,θ, W2n,θ = Vn +
∑

β2n,θ,jkBjk +R2n,θ. (2.45)

Here W2n,θ satisfies, with a constant C independent of n, that

W2n,θ(x) ≥ −Cn2, n = 1, 2, . . . , x ∈ Rd. (2.46)

Indeed, for |x| ≤ 2n, we have φ2n(x) = 1 and (2.16), (2.35) and (2.36) imply

W2n,θ = V + θ
∑

βjkBjk(x) + θ2R

≥ V + θ(|B| − 1) + θ2R ≥ −C⟨x⟩2 ≥ −Cn2;

for 2n < |x| ≤ 4n, we have Vn(x) = 0 and

W2n,θ = θφ2n(x)
∑

βjkBjk(x) +R2n,θ(x) ≥ R2n,θ(x) ≥ −Cn2;

and, for |x| ≥ 4n, W2n,θ(x) = 0. It follows by virtue of (2.40) and (2.44) that

(1− θ)∥∇F2n,θ
un∥2 ≤ (G2n,θ∇F2n,θ

un,∇F2n,θ
un)

= ((Ln −W2n,θ)un, un) ≤ (Lnun, un) + Cn2∥un∥2 ≤ Cn2. (2.47)

Since |b2n,θ(x)| ≤ Cn by (2.36), we then have

∥∇Aun∥ ≤ ∥∇F2n,θ
un∥+ ∥b2n,θun∥ ≤ ∥∇F2n,θ

un∥+ Cn∥un∥ ≤ Cn (2.48)

and ∥(∇φn)∇Aun∥ ≤ n−1∥∇φ∥∞∥∇Aun∥ ≤ C. It follows, since ∇φn = 0 for
|x| ≤ n, that

|(f, (∇φn)∇Aun)| ≤ C∥f∥L2(|x|≥n) → 0

as n → ∞. Thus, the right of (2.43) vanishes and f = 0 and L is essentially
selfadjoint on C∞

0 (Rd).
If V2 ̸= 0, we repeat the argument above, setting Vn = χ|x|≤2nV1 + V2.

Since V2 is of Stummel class, Ln with this Vn is essentially selfadjoint on
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C∞
0 (Rd) by virtue of Theorem 2.1.2 and it suffices to show (f, (∇φn)∇Aun) →

0 as n → ∞ for un ∈ C∞
0 (Rd) of (2.41). We use identity (2.44) and obtain

(1− θ)∥∇F2n,θ
un∥2 ≤ (Lnun, un)− (V2un, un) + Cn2∥un∥2.

as in (2.47). This with (2.42) implies as in (2.48) that

∥∇Aun∥2 ≤ C(n2 + |(V2un, un)|).

Since V2 is −∆-form bounded with bound 0, we have, for any ε > 0,

|(|V2|u, u)| ≤ ε∥∇|u|∥2 + Cε∥u∥2 ≤ ε∥∇Au∥2 + Cε∥u∥2, u ∈ C∞
0 (Rd).

It follows that ∥∇Aun∥ ≤ Cn and limn→∞(f, (∇φn)∇Aun) = 0 as previously.
Thus, L is essentially selfadjoint when V2 ̸= 0 as well. The closure of L is
given byH = L∗ and it is standard thatD(L∗) = {u ∈ H : −∇2

Au+V u ∈ L2}
and this completes the proof.

Proof of Theorem 2.1.8 We let θ and Ṽ1 be as in the theorem. Define

Gθ0 = 1+ iθ0β, Fθ0 = A+ θ0b for θ ≤ θ0 ≤ 1

by replacing β and b by θ0β and θ0b in (2.31) and (2.29) respectively. We
have

−∇2
A+Ṽ1 = −∇Fθ0

Gθ0∇Fθ0
+W̃θ0 , W̃θ0 = Ṽ1+θ0

∑
βjkBjk+θ0

2R. (2.49)

We take the constant C1 ≥ 10 large enough in the definition (2.17) of Ṽ1 so
that |R(x)| ≤ 10−2C1⟨x⟩2 and

W̃θ ≥ Ṽ1 + θ(|B| − 1) + θ2R ≥ C1⟨x⟩2 − 1− |R| ≥ 2
3
C1⟨x⟩2 + 2|R|. (2.50)

We show that, for θ < θ0 ≤ 1, there exist a θ0-dependent constant Cθ0 > 0
and a θ0-independent C > 0 such that

Cθ0(|B(x)|+ |Ṽ1(x)|)+ C1

2
⟨x⟩2 ≤ W̃θ0(x) ≤ (|B(x)|+ |Ṽ1(x)|+C⟨x⟩2). (2.51)

Indeed, the second inequality is obvious from (2.36). The first is also evident
if Ṽ1 > 0, since then Ṽ1 + θ|B| ≥ C1⟨x⟩2 and

W̃θ0 ≥ Ṽ1 + θ0(|B| − 1) + θ20R ≥ 1

2
(|Ṽ1|+ θ0|B|+ C1⟨x⟩2).

To see the first for the case Ṽ1(x) < 0, we first estimate

W̃θ0 = W̃θ + (θ0 − θ)
∑

βjkBjk + (θ20 − θ2)R
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≥ 2
3
C1⟨x⟩2 + (θ0 − θ)(|B| − 1)− |R| ≥ 1

2
C1⟨x⟩2 + (θ0 − θ)|B|

which holds irrespectively of the sign of Ṽ1. If Ṽ1(x) < 0 we also have

W̃θ0 =
θ0
θ
W̃θ +

(
θ0
θ
− 1

)
|Ṽ1|+ θ0(θ0 − θ)R

≥ θ0
θ
(2
3
C1⟨x⟩2 + 2|R|) +

(
θ0
θ
− 1

)
|Ṽ1| − |R| ≥ 2

3
C1⟨x⟩2 +

(
θ0
θ
− 1

)
|Ṽ1|.

Adding both sides of last two estimates and dividing by 2, we obtain the first
inequality of (2.51) for the case Ṽ1(x) < 0.

We define the quadratic form q1(u, v) for u, v ∈ C∞
0 (Rd) by

q1(u, v) = (∇Au,∇Av) + (Ṽ1u, v). (2.52)

We have by virtue of Iwatsuka’s identity (2.49) for θ0 replacing θ that

q1(u, v) = (Gθ0∇Fθ0
u,∇Fθ0

v) + (W̃θ0u, v). (2.53)

Estimates 1− θ0 ≤ Gθ0 ≤ 1 + θ0 and (2.51) imply for a constant C > 1 that

(1− θ0)∥∇Fθ0
u∥2 ≤ (Gθ0∇Fθ0

u,∇Fθ0
u) ≤ (1 + θ0)∥∇Fθ0

u∥2,

C−1∥(|B|+ |Ṽ1|+ ⟨x⟩2)
1
2u∥2 ≤ (W̃θ0u, u) ≤ C∥(|B|+ |Ṽ1|+ ⟨x⟩2)

1
2u∥2.

It follows that quadratic forms (Gθ0∇Fθ0
u,∇Fθ0

v) and (W̃θ0u, v) on C∞
0 (Rd)

are both closable and positive definite and their closures have respective
domains {u : ∇Fθ0

u ∈ L2} and {u : (|B| + |Ṽ1| + ⟨x⟩2) 1
2u ∈ L2}. Thus, q1 is

closable, the closure [q1] has domain

D([q1]) = {u ∈ L2 : ∇Fθ0
u ∈ L2, (|B|+ |Ṽ1|+ ⟨x⟩2)

1
2u ∈ L2} (2.54)

= {u ∈ L2 : ∇Au ∈ L2, (|B|+ |Ṽ1|+ ⟨x⟩2)
1
2u ∈ L2} (2.55)

and [q1](u) is given again by (2.52). Moreover, by making C1 larger if neces-
sary, we have from the first inequality of (2.51) and that |bθ0 | ≤ C⟨x⟩ that

[q1](u) ≥ (1− θ0)∥∇Au∥2 +C∥(|B|+ |Ṽ1|+ ⟨x⟩2)
1
2u∥2, u ∈ D([q1]). (2.56)

We have q0(u, v) = q1(u, v)+(V2u, v). Since V2 is of Kato-class, V2 is−∆-form
bounded with bound 0 and we have, for any ε > 0,

(|V2|u, u) ≤ ε∥∇Au∥2 + Cε∥u∥2 (2.57)

as in the proof of Theorem 2.1.7. Hence the form (|V2|u, u) is [q1]-bounded
with bound 0 and statements (1) and (2) of the theorem follow.
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We prove statement (3). We write Ṽ = Ṽ1 + V2. Let u ∈ D(H0). Then,

u ∈ D([q0]) and ⟨x⟩u, |Ṽ1|
1
2u, |V2|

1
2u ∈ H and ∇Au ∈ H. Hence, Ṽ u ∈ L1

loc

and ∇2
Au is well defined as distributions. It follows for any v ∈ C∞

0 (Rd) that

(H0u, v) = [q0](u, v) = (∇Au,∇Av) + (Ṽ u, v) = (−∇2
Au+ Ṽ u, v).

Hence −∇2
Au + Ṽ u ∈ L2 and H0u = −∇2

Au + Ṽ u. Suppose on the contrary
that u ∈ D([q0]) satisfies −∇2

Au+ Ṽ u ∈ L2. Then, for any v ∈ C∞
0 (Rd),

(−∇2
Au+ Ṽ u, v) = [q0](u, v) = (Gθ0∇Fθ0

u,∇Fθ0
v) + ((W̃θ0 + V2)u, v)

and this extends to all v ∈ D([q0]) by virtue of the argument in the first part.
Thus, u ∈ D(H0) and H0u = −∇2

Au+ Ṽ u. This completes the proof.
The following is a corollary of the proof of Theorem 2.1.8.

Corollary 2.3.2. Let conditions of Theorem 2.1.8 be satisfied. Let C1 be
sufficiently large. Then, for a constant C > 0, we have

∥∇Au∥2 + ∥(|B|+ |Ṽ1|+ ⟨x⟩2)
1
2u∥2 ≤ C[q0](u), u ∈ D([q0]) (2.58)

2.4 Diamagnetic inequality

In this section we assume that A and V satisfy the following conditions:

(1) A(x) ∈ C3(Rd) and B(x) satisfies estimates (2.15).

(2) V = V1 + V2 with V1 ∈ L1
loc and V2 of Kato class.

(3) There exists constants 0 < θ < 1, C∗ > 1 and Q ∈ M(Rd) such that

θ|B(x)|+ V1(x) + C∗⟨x⟩2 ≥ Q(x)2. (2.59)

We then define q0(u) and q1(u) respectively by (2.18) and (2.52) with Ṽ1(x) =
V1(x) + (C∗ +C1)⟨x⟩2 with sufficiently large constant C1 such that results in
the previous section are satisfied. We let H0 and H1 be selfadjoint operators
defined by [q0] and [q1] respectively.

Lemma 2.4.1. Let θ < θ0 < 1. There exists Cθ0 > 0 such that for C1 ≥ Cθ0,
we have the following estimate:

(1− θ0)∥∇Fθ0
u∥2 + ∥Q2u∥2

+ 2(θ0 − θ)∥Q|B|
1
2u∥2 + C1∥⟨x⟩Qu∥2 ≤ ∥H1u∥2, u ∈ D(H1). (2.60)
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Proof. We use the notation of the proof of Theorem 2.1.8. We have as in
there

W̃θ0 ≥ Q(x)2 + (θ0 − θ)|B(x)|+ 2
3
C1⟨x⟩2 (2.61)

Let u ∈ D(H1). Then, ∇Fθ0
u, ∇Au, W̃

1/2
θ0

u and Qu all belong to L2(Rd) by

virtue of (2.61) and, for v ∈ C∞
0 (Rd), we have

(Gθ0Q∇Fθ0
u,Q∇Fθ0

v) = −(∇Fθ0
Gθ0∇Fθ0

u,Q2v)− (Gθ0∇Fθ0
u,∇(Q2)v)

= (H1u,Q
2v)− (W̃θ0u,Q

2v)− (Gθ0∇Fθ0
u,∇(Q2)v). (2.62)

Using φn(x) of the proof of Theorem 2.1.7 and Friedrich’s mollifier jε, we de-
fine vε,n = jε ∗ (φ2

nu) for 0 < ε < 1 and n = 1, 2, . . . . Then, vε,n ∈ C∞
0 (Rd), is

supported by the ball B2(n+1)(0) and vε,n → φ2
nu in the Sobolev space H1(Rd)

as ε → 0. We replace v in (2.62) by vε,n, rewrite the left hand side of the re-
sulting equation as (Gθ0φnQ∇Fθ0

u, φnQ∇Fθ0
u)+2(φnGθ0Q∇Fθ0

u,Q(∇φn)u)
and arrange it as follows:

(Gθ0φnQ∇Fθ0
u, φnQ∇Fθ0

u) + (W̃θ0u,Q
2φ2

nu) = (H1u,Q
2φ2

nu)

− 2(φnGθ0Q∇Fθ0
u,Q(∇φn)u)− (Gθ0Q∇Fθ0

u,Q−1∇(Q2)φ2
nu) (2.63)

By virtue of (2.61) the left hand side may be bounded from below by

(1− θ0)∥φnQ∇Fθ0
u∥2 + ∥φnQ

2u∥2 + (θ0 − θ)∥φnQ|B|
1
2u∥2 + 2C1

3
∥φn⟨x⟩Qu∥2.

(2.64)
The right hand side of (2.63) may be bounded from above by

∥φnH1u∥∥φnQ
2u∥+ 4n−1∥∇φ∥∞∥φnQ∇Fθ0

u∥∥Qu∥
+ 4∥φnQ∇Fθ0

u∥∥φn(∇Q)u∥. (2.65)

Here we have ∥φn(∇Q)u∥ ≤ CQ∥φn⟨x⟩Qu∥ since Q ∈ M(Rd), and we further
estimate (2.65) from above by

1
2
∥φnH1u∥2 + 1

2
∥φnQ

2u∥2 + 2n−1∥∇φ∥∞(∥φnQ∇Fθ0
u∥2 + ∥Qu∥2)

+ 1−θ0
2

∥φnQ∇Fθ0
u∥2 + 8C2

Q

1−θ0
∥φn⟨x⟩Qu∥2. (2.66)

Combining (2.64) and (2.66), we conclude that(
1−θ0
2

− 2∥∇φ∥∞
n

)
∥φnQ∇Fθ0

u∥2 + 1
2
∥φnQ

2u∥2 + (θ0 − θ)∥φnQ|B|
1
2u∥2

+
(

2C1

3
− 8C2

Q

1−θ0

)
∥φn⟨x⟩Qu∥2 ≤ 1

2
∥H1u∥2 + 2

n
∥∇φ∥∞∥Qu∥2.
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We choose C1 > 0 larger if necessary so that

C1

6
≥ 8C2

Q

1−θ0

and let n → ∞. Then the monotone convergence implies that Q2u, Q∇Fθ0
u,

Q|B| 12u and, a fortiori ⟨x⟩Qu all belong to L2(Rd) and we obtain (2.60).

Since Fθ0 = A+ θ0b and |b| ≤ C⟨x⟩, we have

(1− θ0)∥Q∇Au∥2 ≤ 2(1− θ0)∥Q∇Fθ0
u∥2 + 2C2(1− θ0)θ

2
0∥⟨x⟩Qu∥2.

Thus, assuming 2C2 < C1, we obtain the following Corollary.

Corollary 2.4.2. For θ < θ0 < 1, there exists Cθ0 > 0 such that for C1 ≥ Cθ0

(1− θ0)∥Q∇Au∥2 + ∥Q2u∥2

+ 2(θ0 − θ)∥Q|B|
1
2u∥2 + C1∥⟨x⟩Qu∥2 ≤ 2∥H1u∥2, u ∈ D(H1). (2.67)

Write a± = max(0,±a) and define non-negative quadratic form:

q1+(u) = ∥∇Au∥2 + ∥Ṽ
1
2
1+u∥2, D(q1+) = C∞

0 (Rd).

Theorem 2.1.8 implies that q1+ is closable and we denote byH1+ = −∇2
A+Ṽ1+

the selfadjoint operator defined by [q1+].

Lemma 2.4.3. For any θ < θ0 < 1, there exists Cθ0 such that, for C1 > Cθ0

we have
∥Ṽ1−u∥ ≤ (θ/θ0)∥H1+u∥, u ∈ D(H1+). (2.68)

It follows, particular, that D(H1) = D(H1+).

Proof. Let θ < θ0 < 1. Since Ṽ1+(x) ≥ 0, we obviously have

θ0|B(x)|+ Ṽ1+(x) + C∗⟨x⟩2 ≥ θ0(1 + |B|2 + x4)1/2

and assumption (2.15) implies Q0(x) = θ
1
2
0 (1+ |B|2+x4)1/4 ∈ M(Rd). Then,

take θ1 such that θ0 < θ1 < 1 and repeat the argument of the proof of Lemma
2.4.1 using H1+, θ0, θ1 and Q0 in place of H1, θ, θ0 and Q respectively. We
obtain from (2.60) that, for C1 > Cθ0 ,

∥Q2
0(x)u∥ ≤ ∥H1+u∥, u ∈ D(H1+). (2.69)

Since Ṽ1− ≤ θ|B(x)| by virtue of (2.59) and θ|B(x)| ≤ (θ/θ0)Q
2
0(x), (2.69)

implies the lemma.
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Theorem 2.4.4. There exist uniformly bounded operators Ba ∈ B(H) for
a > 0 such that, for every u ∈ L2(Rd), we have

|(H1 + a2)−1u(x)| ≤ (H1+ + a2)−1|Bau|(x) ≤ (−∆+ a2)−1|Bau|(x). (2.70)

Proof. Lemma 2.4.3 implies that, for any θ < θ0 < 1, provided that C1 ≥ Cθ0 ,

∥Ṽ1−(H1+ + a2)−1u∥ ≤ (θ/θ0)∥u∥, u ∈ L2

for any a > 0. It follows that

(H1 + a2)−1 = (H1+ + a2)−1Ba, Ba = (1− Ṽ1−(H1+ + a2)−1)−1 (2.71)

and ∥Ba∥ ≤ (1 − (θ/θ0))
−1. We then apply the diamagnetic inequality (pp.

9–10 of [5]) to H1+ + a2. The lemma follows.

Corollary 2.4.5. Provided that C1 is large enough, we have

∥(−∆+ 1)1/2Q|u|∥ ≤ C∥H1u∥, u ∈ D(H1). (2.72)

Proof. Corollary 2.4.2 implies Qu ∈ L2 and ∇A(Qu) = Q∇Au+(∇Q)u ∈ L2.
It follows, since |∇|u|| ≤ |∇Au|, that Q|u| ∈ H1 and

∥(−∆+1)1/2Q|u|∥2 = ∥Qu∥2+∥∇|Qu|∥2 ≤ ∥Qu∥2+∥∇A(Qu)∥2 ≤ C∥H1u∥2.

Estimate (2.72) follows.

2.5 Proof of Theorem 2.1.9

.
In this and next sections we prove Theorems 2.1.9 and 2.1.10 respectively.

Before starting the proof, we briefly discuss the gauge transform which will
play an important role in what follows. We define the gauge transform by

v(t, x) = G(t)u(t, x) = e−iF (t)⟨x⟩2u(t, x), F (t) =

∫ t

0

(C(s) + C1)ds (2.73)

by using a strongly continuous family of unitary operatorsG(t), where C1 > 0
a large constant. Then, u(t, x) satisfies (2.1) if and only if v(t, x) does

i∂tv = (−∇2
Ã(t)

v + Ṽ (t, x))v, (2.74)

Ã(t, x) = A(t, x)− 2F (t)x, Ṽ (t, x) = V (t, x) + (C(t) + C1)⟨x⟩2 (2.75)
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and, provided a dense subspace Σ satisfies G(t)Σ = Σ, {U(t, s) : t, s ∈ R} is
a unitary propagator for (2.1) on Σ if and only if so is

Ũ(t, s) = G(t)U(t, s)G(s)−1 (2.76)

for (2.74) on Σ. If V1 satisfies (2.16), Ṽ1(t, x) = V1(t, x) + (C(t) + C1)⟨x⟩2
does

|B(t, x)|+ Ṽ1(t, x) ≥ Q(x)2 + C1⟨x⟩2. (2.77)

We assume in what follows that C1 > 0 is taken sufficiently large so that,
with this Ṽ1(t, x), Theorems 2.1.7 and 2.1.8 as well as Lemma 2.4.1 and
Theorem 2.4.4 are satisfied uniformly with respect to t ∈ I. In the proof, we
shall first construct propagator Ũ(t, s) for equation (2.74), define U(t, s) by
(2.76) and check that it satisfies the properties of Theorem 2.1.9 or Theorem
2.1.10.

We now begin the proof of Theorem 2.1.9. We consider five operators

L(t) = −∇2
A(t) + V (t), L0(t) = −∇2

A(t) + Ṽ (t), L1(t) = −∇2
A(t) + Ṽ1(t),

L̃0(t) = −∇2
Ã(t)

+ Ṽ (t), L̃1(t) = −∇2
Ã(t)

+ Ṽ1(t).

These operators are all essentially selfajoint on C∞
0 (Rd) and we denote their

selfadjoit extensions by H(t), H0(t), H1(t), H̃0(t) and H̃1(t), respectively.
Since V2(t, x) is of Stummel class uniformly with respect to t ∈ I, Theo-

rem 2.4.4 implies that, for any ε > 0, there exists a0 such that

∥V2(t)(H1(t)+ a2)−1∥B(H) ≤ ∥V2(t)(−∆+ a2)−1∥B(H)∥Ba∥B(H) < ε, a > a0.

It follows by Kato-Rellich theorem that

H0(t) = H1(t) + V2(t), D(H0(t)) = D(H1(t)). (2.78)

Moreover, by choosing C1 large enough we may assume by virtue of (2.60),

∥u∥ ≤ ∥H1(t)u∥, ∥V2(t)H1(t)
−1∥ ≤ 1/2, t ∈ I.

Then, we have for a constant C0

C−1
0 ∥H1(t)u∥ ≤ ∥H0(t)u∥ ≤ C0∥H1(t)u∥, t ∈ I. (2.79)

Since Ã and A produce the same magnetic field and |Ã− A| ≤ C⟨x⟩, (2.78)
holds with H̃0(t) and H̃1(t) in place of H0(t) and H1(t) respectively and we
likewise have

C−1
0 ∥H̃1(t)u∥ ≤ ∥H̃0(t)u∥ ≤ C0∥H̃1(t)u∥. (2.80)
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Lemma 2.5.1. (1) Domains of H0(t), H1(t), H̃0(t) and H̃1(t) satisfy

D(H0(t)) = D(H1(t)) = D(H̃0(t)) = D(H̃1(t)) ≡ D ⊂ D(H(t))

for all t ∈ I and D is independent of t ∈ I.

(2) There exists a constant c > 0 such that

∥H0(t)u∥ ≤ ec|t−s|∥H0(s)u∥, t, s ∈ I, (2.81)

∥(H0(t)−H0(s))u∥ ≤ c|t− s|∥H0(s)u∥, t, s ∈ I. (2.82)

The same holds for H̃0(t) replacing H0(t).

(3) The gauge transform G(t) = e−iF (t)⟨x⟩2 satisfies G(t)D = D and

G(t)H0(t) = H̃0(t)G(t), G(t)H1(t) = H̃1(t)G(t). (2.83)

If φ ∈ D, t 7→ G(t)φ is D-valued continuous, H-valued C1 and

∂tG(t)φ = −i(C(t) + C1)⟨x⟩2G(t)φ.

Proof. We write C(t) for C(t)+C1 in the proof by absorbing C1 into C(t) for
shorting formulas. Let u ∈ C∞

0 (Rd). Then, H0(t)u is H-valued differentiable
almost everywhere with respect to t and

Ḣ0(t)u = 2iȦ(t, x)∇A(t)u+ i∇x · Ȧ(t, x)u+ Ċ(t)⟨x⟩2 + V̇ (t, x)u. (2.84)

We write the right hand side in the form

2iȦ(t, x) ·∇A(s,x)u+2Ȧ(t, x) ·
(∫ t

s

Ȧ(r, x)dr

)
u+(i∇x ·Ȧ(t, x)+Ċ(t)⟨x⟩2)u

+ V̇ (t, x)u = I1(t, s)u+ I2(t, s)u+ I3(t)u+ I4(t)u.

Since |Ȧ(t, x)| ≤ CQ(x), (2.67) implies

∥I1(t, s)u∥ ≤ 2∥|Ȧ(t, x)||∇A(s)u|∥ ≤ C∥Q∇A(s)u∥ ≤ C∥H1(s)u∥.

Denote by M(t, x) any of ∇x(Ȧ(t, x)
2), Ȧ(t, x)2, ∇x · Ȧ(t, x) and Ċ(t)⟨x⟩2.

Then, |M(t, x)| ≤ CQ(x)2 and (2.67) implies ∥M(t)H1(s)
−1u∥ ≤ C1∥u∥

uniformly with respect to t, s ∈ I. Thus,

∥I2(t, s)u∥+ ∥I3(t)u∥ ≤ C∥H1(s)u∥, t, s ∈ I.
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Write V̇ (t, x) = W0(t, x) + W1(t, x) + W2(t, x) as in Theorem 2.1.9, then
∥W0(t)u∥ ≤ C∥Q2u∥ ≤ C∥H1(s)u∥ for any t, s ∈ I as above;

∥W1(t)u∥ ≤ ∥Q−1W1(t)(−∆+ 1)−
1
2∥B(H)∥(−∆+ 1)

1
2Q|u|∥ ≤ C∥H1(s)u∥

by virtue of (2.72); and Theorem 2.4.4 implies

∥W2(t)H1(s)
−1u∥ ≤ C∥W2(t)(−∆+ 1)−1|B1u|∥ ≤ C∥B1u∥ ≤ C∥u∥.

Thus, ∥I4(t, s)u∥ ≤ C∥H1(s)u∥ and combining these estimates, we obtain

∥Ḣ0(t)u∥ ≤ C∥H1(s)u∥ ≤ C∥H0(s)u∥, t, s ∈ I. (2.85)

It follows by integration that

∥(H0(t)−H0(s))u∥ ≤ c|t− s|∥H0(s)u∥, u ∈ C∞
0 (Rd). (2.86)

Since C∞
0 (Rd) is a core of H0(s), (2.86) extends to u ∈ D(H0(s)). It follows

that D(H0(s)) ⊂ D(H0(t)) and by symmetry D(H0(s)) = D(H0(t)) for any
t, s ∈ I and, consequently, (2.82) for H0(t) is satisfied. (2.82) clearly implies
(2.81). Changing A(t) by Ã(t) will not change B(t, x) and the argument
above yields the same results for H̃0(t) and H̃1(t). This proves statement
(2).

Let u ∈ D(H0(t)). Then, ⟨x⟩2u ∈ H by virtue of (2.67) and

H(t)u = H0(t)u− C(t)⟨x⟩2u ∈ H. (2.87)

Since D(H(t)) = {u ∈ H : H(t)u ∈ L2}, (2.87) implies u ∈ D(H(t)) and
D(H0(t)) ⊂ D(H(t)).

We next prove D(H1(t)) = D(H̃1(t)), which will then prove statement
(1). Define for θ ∈ [0, 1]

H1(t, θ) = −∇2
A(t,θ) + Ṽ1(t, x), A(t, θ, x) = A(t, x)− 2θF (t)x,

so that H1(t, 0) = H1(t) and H1(t, 1) = H̃1(t). Since A(t, θ, x) and A(t, x)
generate the same magnetic field B(t, x) and |2θF (t)x| ≤ C⟨x⟩, results of
previous sections apply to H1(t, θ). We have

∂θH1(t, θ)u = −i4F (t)x∇A(t)u+ 8θF (t)2x2u− 2diF (t)u

and (2.67) implies ∥∂θH1(t, θ)u∥ ≤ C∥H1(t)u∥ for 0 ≤ θ ≤ 1. Thus,

∥(H1(t, θ)−H1(t, σ))u∥ ≤ C|θ − σ|∥H1(t, σ)u∥, u ∈ C∞
0 (Rd),
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and we obtain the desired result D(H1(t)) = D(H̃1(t)) as previously.
It is clear that G(t) is an isomorphism of C∞

0 (Rd) and G(t)H0(t)φ =
H̃0(t)G(t)φ for φ ∈ C∞

0 (Rd). Since C∞
0 (Rd) is a core of H0(t), it follows

that G(t)D(H0(t)) ⊂ D(H̃0(t)). This clearly holds for G(−t) = G(t)−1 as
well and we obtain G(t)D = D and G(t)H0(t) = H̃0(t)G(t). This argument
likewise applies to the pair H1(t) and H̃1(t) and we obtain (2.83). The last
statement is obvious since D ⊂ D(⟨x⟩2). This completes the proof.

Proof of Theorem 2.1.9. Lemma 2.5.1 yields statement (a) of the theorem.
It also implies that graph norms of any two of {H0(t), H̃0(s) : t, s ∈ I} are
equivalent to each other. We equip D with the graph norm of H0(t0) as
in the theorem. Then, it is obvious that D ⊂ H continuously and densely,
D = D(H̃0(t)) for every t ∈ I and that I ∋ t 7→ H̃0(t) ∈ B(D,H) is norm
continuous by virtue of (2.82) for H̃0(t). We wish to apply Theorem 2.2.1
to the triplet (X ,Y , A(t)) by setting X = H, Y = D and A(t) = H̃0(t). For
this we need check conditions (1) and (2) of Theorem 2.2.1 are satisfied.

For t ∈ I, we define Yt = D but with the graph norm of H̃0(t) and
Xt = H. Then, the norm of Yt is equivalent to that of D and (2.81) for
H̃0(t) implies condition (2.27). It follows from Theorem 2.1.2 that H̃0(t)
is selfadjoint in Xt = H. Hence the part of H̃0(t) in Yt(= D(H̃0(t))) is
automatically selfadjoint with domain D(H̃0(t)

2). Thus, the conditions are
satisfied.

It follows that there uniquely exists a family of operators {Ũ(t, s) : s, t ∈
I} which satisfies properties of Theorem 2.2.1 for (H,D, H̃0(t)). Moreover,
Ũ(t, s) is a unitary operator of H. Indeed, if we set u(t) = Ũ(t, s)φ for
φ ∈ Y , i∂t∥u(t)∥2 = (H̃0(t)u(t), u(t)) − (u(t), H̃0(t)u(t)) = 0 since H̃0(t) is
selfadjoint. Hence Ũ(t, s) is an isometry of H and, since Ũ(t, s)D = D, it is
unitary. We define

U(t, s) = G(t)−1Ũ(t, s)G(s).

Then, U(t, s) is a strongly continuous family of unitary operators on H;
Lemma 2.5.1 (3) implies that U(t, s) ∈ B(D); if φ ∈ D, U(t, s)φ is D-valued
continuous, H-valued C1 and that U(t, s)φ satisfies the first of Eqns. (2.10):

i∂tU(t, s)φ = G(t)−1(−C(t)⟨x⟩2 + H̃0(t))Ũ(t, s)G(s)φ = H(t)U(t, s)φ.

We may similarly prove that U(t, s)φ satisfies the other of (2.10).
For proving the uniqueness of U(t, s) we have only to notice the following:

If U(t, s) satisfies properties of the theorem, then Ũ(t, s) = G(t)U(t, s)G(s)−1

does those for H̃0(t) and such Ũ(t, s) is unique by virtue of Theorem 2.2.1.
When φ ∈ D, (2.10) shows that u(t, x) = U(t, s)φ(x) satisfies (2.1) in the

sense of distributions. Then, the standard approximation argument shows
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that the same holds for φ ∈ H as well and U(t, s) is unitary propagator on
H for (2.1). We omit the details. The proof is completed.

2.6 Proof of Theorem 2.1.10

For the constant θ in (2.24) we take and fix θ0 such that θ < θ0 < 1 and take
the constant C1 > 0 large enough so that results of Sections 2.3 and 2.4 are
satisfied, uniformly with respect to t ∈ I, for q0(t) of (2.26) and

q1(t)(u, v) = (∇A(t)u,∇A(t)v) + (Ṽ1(t)u, v), u, v ∈ C∞
0 (Rd),

in place of q0 and q1 respectively. In addition to q0(t) and q1(t), we define

q̃0(t)(u, v) = (∇Ã(t)u,∇Ã(t)v) + (Ṽ u, v), u, v ∈ C∞
0 (Rd), (2.88)

q̃1(t)(u, v) = (∇Ã(t)u,∇Ã(t)v) + (Ṽ1u, v), u, v ∈ C∞
0 (Rd), (2.89)

where Ã(t, x) = A(t, x) − 2F (t)x. Since Ã(t, x) and A(t, x) generate same
magnetic field and they differ only by 2F (t)x, results of Sections 2.3 and 2.4
likewise apply to q̃0(t) and q̃1(t) uniformly for t ∈ I. In particular, since V2

is of Kato class uniformly with respect to t ∈ I, q̃1(t) is uniformly positive
definite and

C−1q̃1(t)(u) ≤ q̃0(t)(u) ≤ Cq̃1(t)(u), u ∈ C∞
0 (Rd) (2.90)

for a t-independent constant C > 0. Thus, D([q0(t)]) = D([q1(t)]) and
D([q̃0(t)]) = D([q̃1(t)]). We denote by H0(t), H1(t), H̃0(t) and H̃1(t) selfad-
joint operators defined respectively by [q0(t)], [q1(t)], [q̃0(t)] and [q̃1(t)]. As
in the previous section, we write C(t) for C(t) + C1 absorbing C1 into C(t).

Lemma 2.6.1. (1) Domains of [q0(t)], [q1(t)], [q̃0(t)] and [q̃1(t)] satisfy

D([q0(t)]) = D([q1(t)]) = D([q̃0(t)]) = [q̃1(t)] = Y ⊂ D(L
1
2
Q)

and are independent of t ∈ I.

(2) There exists a constant c > 0 such that

[q̃0(t)](u) ≤ ec|t−s|[q̃0(s)](u), u ∈ Y , t, s ∈ I. (2.91)

(3) The gauge transform G(t) maps Y onto Y and

[q̃0(t)](G(t)u) = [q0(t)](u), [q̃1(t)](G(t)u) = [q1(t)](u), u ∈ Y . (2.92)
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Proof. By virtue of (2.61) corresponding to Ã(t, x) and Ṽ (t, x), we have

∥Qu∥2 + ∥∇Ã(t)u∥
2 ≤ Cq̃0(t)(u), u ∈ C∞

0 (Rd), t ∈ I. (2.93)

Hence, ∥ ˙̃A(t)u∥2 ≤ C∥Qu∥2 ≤ Cq̃0(s)(u) for any t, s ∈ I and by integration

∥(Ã(t)− Ã(s))u∥ ≤ C|t− s|q̃0(s)(u)
1
2 . (2.94)

Likewise, using, in addition to (2.93), assumption (2.25) and obvious identity

∥| ˙̃V (r)|1/2u∥ = ∥| ˙̃V (r)|1/2|u|∥, we obtain that

∥| ˙̃V (r)|1/2u∥2 ≤ C(∥∇|u|∥2 + ∥Qu∥2) ≤ C(∥∇Ã(s)u∥
2 + ∥Qu∥2) ≤ Cq̃0(s)(u).

Applying this to Ṽ (t, x)− Ṽ (s, x) =
∫ t

s
˙̃V (r, x)dr, we have

|((Ṽ (t)− Ṽ (s))u, v)| ≤ C|t− s|q̃0(s)(u)
1
2 q̃0(s)(v)

1
2 . (2.95)

Write q̃0(t)(u, v)− q̃0(s)(u, v) for u, v ∈ C∞
0 (Rd) in the form

(∇Ã(s)u, i(Ã(s)− Ã(t))v) + (i(Ã(s)− Ã(t))u,∇Ã(s)v)

+ ((Ã(t)− Ã(s))u, (Ã(t)− Ã(s))v) + ((Ṽ (t)− Ṽ (s))u, v).

We estimate each term separately by using (2.93), (2.94) and (2.95). We
obtain for |t− s| ≤ 1 that

|q̃0(t)(u, v)− q̃0(s)(u, v)| ≤ C|t− s|q̃0(s)(u)
1
2 q̃0(s)(v)

1
2 . (2.96)

It follows that D([q̃0(t)]) = D([q̃0(s)]) as in the proof of Lemma 2.5.1, all
estimate above extend to u, v in D([q̃0(t)]) = D([q̃0(s)]) and

[q̃0(t)](u) ≤ (1 + C|t− s|)[q̃0(s)](u) ≤ eC|t−s|[q̃0(s)](u). (2.97)

Argument above applies to q0(t) as well and we have (2.93) for u ∈ D([q0(t)]);
D([q0(t)]) = D([q0(s)]) for t, s ∈ I; and estimate (2.97) holds for [q0(t)] and
[q0(s)]. Moreover, we have D([q1(t)]) = D([q̃1(t)]) by virtue of characteriza-

tion formula (2.19) of domains of the forms. Since ∥L
1
2
Qu∥2 ≤ C(∥Qu∥2 +

∥∇Ã(t)u∥2) for u ∈ C∞
0 (Rd), we also have D([q̃0(t)]) ⊂ D(L

1
2
Q) from (2.93).

Statements (1) and (2) follow.
Both ∥∇Ã(t)G(t)u∥ = ∥∇A(t)u∥ and (V (t)G(t)u,G(t)u) = (V (t)u, u) are

obvious for u ∈ C∞
0 (Rd). Since the latter space is a core of the forms [q0(t)]

and [q̃0(t)], we see that D([q̃0(t)]) = G(t)D([q0(t)]), G(t) maps Y onto Y ,
and that [q̃0(t)](G(t)u) = [q0(t)](u) for u ∈ Y . The corresponding relation
for [q1(t)] and [q̃1(t)] may be proved similarly.
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Before proceeding to the proof Theorem 2.1.10, we recall the following
general fact: If H is a positive selfadjoint operator in a Hilbert space H,
H1 ⊂ H ⊂ H−1 is the scale of Hilbert spaces associated with H, viz. H1 =
D(H1/2) and H−1 = H∗

1 with H∗ being identified with H, then:

(i) H−1 is the completion of H by the norm ∥H−1/2u∥.

(ii) H has a natural extension H− to H−1 and H− is selfadjoint in H−1

with domain D(H1/2).

(iii) The part H+ of H− in H1 is again selfadjoint with domain D(H3/2).

These should be obvious if, by using spectral representation theorem, we
represent H as a multiplication operator by a positive function on L2(M,dµ),
(M,dµ) being a suitable measure space.
Proof of Theorem 2.1.10. We equip Y with the inner product q0(u, v) and
let X be its dual space as in the theorem. It is obvious that Y ⊂ X densely
and continuously. Lemma 2.6.1 yields statement (a) except for the fact that
H(t) ∈ B(Y ,X ) and it is norm continuous. To prove the latter fact, we first
show that the multiplication by ⟨x⟩2 is bounded from Y to X by using (2.93)
for q0(t):

∥⟨x⟩2u∥X = sup
v∈Y,∥v∥Y=1

|(⟨x⟩2u, v)| ≤ C sup
v∈Y,∥v∥Y=1

∥Qu∥∥Qv∥

≤ C sup
v∈Y,∥v∥Y=1

[q0(t0)](u)
1
2 [q0(t0)](v)

1
2 = C∥u∥Y . (2.98)

Then, we estimate for u, v ∈ C∞
0 (Rd) via (2.92) for [q0(t)] as follows:

|(H(t)u, v)| ≤ |q0(t)(u, v)|+ |(C(t)⟨x⟩2u, v)| ≤ C(e2c|t−t0| + C(t))∥u∥Y∥v∥Y .

and ∥H(t)u∥X ≤ C∥u∥Y . This extends to u ∈ Y since C∞
0 (Rd) is dense in Y .

Thus, H(t) ∈ B(Y ,X ). We have

((H(t)−H(s))u, v) = ((H0(t)−H0(s))u, v)− ((C(t)− C(s))⟨x⟩2u, v)
= ((q0(t)− q0(s))u, v)− ((C(t)− C(s))⟨x⟩2u, v), u, v ∈ Y .

Thus, (2.96) for q0(t) and (2.98) imply ∥H(t) − H(s)∥B(Y,X ) ≤ C(|t − s| +
|C(t)− C(s)|) and statement (a) follows.

We define Yt to be Y with new inner product (u, v)Yt = [q̃0(t)](u, v) and
Xt to be the dual space of Yt with respect to the inner product of H. Then,
Xt ⊂ H ⊂ Yt is the scale of Hilbert space associated with positive selfadjoint
operator H̃0(t). Then, by virtue of the property (i), Xt is independent of
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t as a set and is equal to X since Yt = Y is independent of t as a set
with equivalent Hilbert space structures. Properties (ii) and (iii) produce
selfadjoint operators H̃0(t)− and H̃0(t)+ in Xt and Yt respectively. It is
evident that H̃0(t)− is a closed operator in X (with respect to the original
norm) and H̃0(t)+ is its part in Y . We now want to apply Theorem 2.2.1 to
triplet (X ,Y , H̃0(t)−).

We check conditions of Theorem 2.2.1 for (X ,Y , H̃0(t)−). Norm ∥u∥Yt

is equivalent with the original one of Y by virtue of the closed graph theo-
rem. Estimate (2.91) implies that {∥u∥Yt : t ∈ I} satisfies condition (2.27) of
Theorem 2.2.1 for Yt and likewise for Xt by duality. From (2.96) we have

|⟨(H̃0(t)− − H̃0(s)−)u, v⟩| ≤ c|t− s|q̃0(s)(u)
1
2 q̃0(s)(v)

1
2 , (2.99)

where ⟨·, ·⟩ on the left is the coupling between X and Y . This implies that

∥(H̃0(t)− − H̃0(s)−)u∥Xs ≤ c|t− s|∥u∥Ys (2.100)

and we see that I ∋ t → H̃0(t)− ∈ B(Y ,X ) is norm continuous.
Thus, there uniquely exists a family of operators {Ũ(t, s) : t, s ∈ I} which

satisfies the properties of Theorem 2.2.1 for (X ,Y , H̃0(t)−). We define

U(t, s) = G(t)−1Ũ(t, s)G(s).

We know that G(t) maps Y onto Y by virtue of Lemma 2.6.1 and, (2.98)
implies that, for u ∈ Y , I ∋ t 7→ G(t)u ∈ X is continuously differentiable.
Then, it is easy to check that U(t, s) is satisfies all properties of statement
(b) except that U(t, s) is a strongly continuous family of unitary operators
in H, which we now show. Define u(t) = U(t, s)φ for φ ∈ Y . Then, with
⟨·, ·⟩ being the coupling of X and Y , we have

∂t(u(t), u(t))L2 = 2ℜ⟨−iH(t)u(t), u(t)⟩
= 2ℜ{−iq0(t)(u(t), u(t)) + iC(t)⟨⟨x⟩2u(t), u(t)⟩} = 0.

It follows that ∥u(t)∥ = ∥φ∥ and, since Y is dense in H, we conclude
U(t, s)H ⊂ H and ∥U(t, s)φ∥ = ∥φ∥ for all φ ∈ H. Then, U(t, s) must
be unitary since U(t, s)U(s, t)φ = φ. If φ ∈ Y , (t, s) 7→ U(t, s)φ ∈ H is con-
tinuous in H. Hence U(t, s) is strongly continuous in B(H) by the unitarity.
The uniqueness of U(t, s) of Theorem 2.1.10 follows from the uniqueness
result of Theorem 2.2.1 by tracing back the argument above.
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Chapter 3

Absence of zero resonances of
massless Dirac operators.

3.1 Introduction, assumption and theorems.

We consider the massless Dirac operator

H = α ·D +Q(x), D = −i∇x, x ∈ R3, (3.1)

acting on C4-valued functions on R3. Here α = (α1, α2, α3) is the triple of
4× 4 Dirac matrices:

αj =

(
0 σj

σj 0

)
j = 1, 2, 3,

with the 2× 2 zero matrix 0 and the triple of 2× 2 Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and we use the vector notation that (α ·D)u =
∑3

j=1 αj(−i∂xj
)u. We assume

that Q(x) is a 4×4 Hermitian matrix valued function satisfying the following
assumption:

Assumption 3.1.1. There exists positive constant C and ρ > 1 such that,
for each component qjk(x) (j, k = 1, · · ·, 4) of Q(x),

|qjk(x)| ≤ C⟨x⟩−ρ, x ∈ R3.

where ⟨x⟩ = (1 + |x|2) 1
2 .
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We remark that the Dirac operator for a Dirac particle minimally coupled
to the electromagnetic field described by the potential (q, A) is given by

α · (D − A(x)) + q(x)I4, (3.2)

where I4 is the 4× 4 identity matrix, and is a special case of (3.1.1). And, if
q(x) = 0, (3.2) reduces to

α · (D − A(x)) =

(
0 σ · (D − A(x))

σ · (D − A(x)) 0

)
,

where σ · (D − A(x)) is the Weyl-Dirac operator.
To state the result of the paper, we introduce some notation and terminology.F

is the Fourier transform:

(Ff)(ξ) =
1

(2π)3/2

∫
R3

f(ξ)e−ix·ξdξ.

We often write f̂(ξ) = (Ff)(ξ) and f̌(ξ) = (F−1f)(ξ). L2(R3) = L2(R3,C4)
is the Hilbert space of all C4-valued square integrable functions. For s ∈ R,
L2,s(R3) = L2,s(R3,C4) := ⟨x⟩−sL2(R3,C4) is the weighted L2(R3) space.
S ′
(R3) = S ′

(R3,C4) is the space of C4-valued tempered distributions. Hs(R3) =
Hs(R3,C4) is the Sobolev space of order s:

Hs(R3) = {f ∈ S ′
(R3)|f̂ ∈ L2,s(R3)}

with the inner product (f, g)Hs =
∑4

j=1(f̂j, ĝj)L2,s . The spaces H−s(R3) and

Hs(R3) are duals of each other with respect to the coupling

⟨f, g⟩ :=
4∑

j=1

∫
R3

(Ffj)(ξ)(Fgj(ξ))dξ, f ∈ H−s(R3), g ∈ Hs(R3).

For Hilbert spaces X and Y , B(X ,Y) stands for the Banach space of bounded
operators from X to Y , B(X ) = B(X ,X ).

It is well known that the free Dirac operator H0 := α ·D is self-adjoint in
L2(R3) with domain D(H0) = H1(R3). Hence by the Kato-Rellich theorem,
H is also self-adjoint in L2(R3) with domain D(H) = D(H0). We denote their
self-adjoint realizations again by H0 and H respectively. In what follows, we
write H0f also for (α ·D)f when f ∈ S ′

(R3).

Definition 3.1.2. If f ∈ L2(R3) satisfies Hf = 0, we say f is a zero mode
of H. If f ∈ L2,−3/2(R3) satisfies Hf = 0 in the sense of distributions,
but f /∈ L2(R3), then f is said to be a zero resonance state and zero is a
resonance of it.
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The following is the main result of this paper.

Theorem 3.1.3. Let Q(x) satisfy Assumption 3.1.1. Suppose f ∈ L2,−3/2(R3)
satisfies Hf = 0 in the sense of distributions, then for any µ < 1/2, we have
⟨x⟩µf ∈ H1(R3). In particular, there are no resonance for H.

Remark 3.1.4. The decay result ⟨x⟩µf ∈ H1(R3), µ < 1/2 cannot be
improved. This can be seen from the example of zero mode of the Weyl-
Dirac operator which was constructed by Loss-Yau [17]. Loss and Yau have
constructed a vector potential ALY (x) and a zero mode ϕLY (x) satisfying
σ · (D − ALY (x))ϕLY = 0, where ALY and ϕLY satisfy ALY (x) = O(⟨x⟩−2),
|ϕLY (x)| = ⟨x⟩−2. Define fLY = t(0, ϕLY ) and Q(x) = −α · ALY (x), then

HfLY = (H0 +Q)fLY =

(
0 σ · (D − ALY (x))

σ · (D − ALY (x)) 0

)
fLY = 0,

and fLY ∈ L2,µ(R3) for any µ < 1/2. However, fLY /∈ L2, 1
2 (R3).

We remark that Saitō - Umeda [21] and Zhong - Gao [30] have proven
the following result under the same assumption |Q(x)| ≤ C⟨x⟩−ρ, ρ > 1 (In
[21], it is assumed ρ > 3/2, however, arguments of [21] go through under the
assumption ρ > 1 as was made explicit in [30]): If f satisfies f ∈ L2,−s(R3)
for some 0 < s ≤ min{3/2, ρ− 1} and Hf = 0 in the sense of distributions,
then f ∈ H1(R3). Our theorem improves over the results of [21] and [30]
by weakening the assumption f ∈ L2,−s(R3) to L2,−3/2(R3), which is ρ > 1
independent, and by strengthening the result f ∈ H1(R3) to a sharp decay
estimate ⟨x⟩µf ∈ H1(R3), µ < 1/2. We briefly explain the significance of the
theorem.

The solution of the time-dependent Dirac equation

i
∂u

∂t
= Hu, u(0) = ϕ

is given by e−itHϕ. Under Assumption 3.1.1, it has been proven that the
spectrum σ(H) = R, the limiting absorption principle is satisfied and that
σp(H)\{0} is discrete. To make the argument simple, we assume σp(H) ⊂
{0}. Then for ϕ ∈ L2

ac(H), the absolutely continuous spectral subspace of
L2 for H, e−itHϕ may be represented in terms of the boundary values of the
resolvent (H − λ± i0)−1:

e−itHϕ = lim
ϵ↓0

1

2πi

∫
R\(−ϵ,ϵ)

e−itλ{(H − λ− i0)−1 − (H − λ+ i0)−1}ϕdλ, t > 0,

and the asymptotic behavior as t → ±∞ of e−itHϕ depends on whether (1)
λ = 0 is a regular point, viz, (H − (λ ± i0))−1 is smooth up to λ = 0, (2)
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λ = 0 is a resonance of it, (3) λ = 0 is an eigenvalue of H or (4) λ = 0 is an
eigenvalue at the same time is a resonance. Thus, Theorem 3.1.3 eliminates
the possibility (2) and (4). We should recall that if m ̸= 0, then all four cases
mentioned above appear at the threshold points ±m. It is well-known that
λ = 0 is not a regular point if f+(H0±i0)−1Qf = 0 has a non-trivial solution
f ∈ L2,−ρ/2 and this f satisfies Hf = 0. Note that, to conclude that f ∈ H1

by using results of [21] or [30], we need assume 0 < ρ/2 ≤ min{3/2, ρ− 1} or
2 ≤ ρ ≤ 3, which is a severe restriction for this application, whereas Theorem
3.1.3 does not impose only such restriction.

The rest of the paper is devoted to the proof of Theorem 3.1.3. In section
2, we prepare some lemmas for proving the main theorem. In section 3, we
prove the main theorem 3.1.3.

3.2 Preliminaries.

In this section, we prepare some lemmas which are necessary for proving the
theorem. We use the following well-known lemma:

Theorem 3.2.1. (Nirenberg - Walker [19]) Let 1 < p < ∞ and let a, b ∈ R
be such that a+ b > 0. Define

k(x, y) =
1

|x|a|x− y|d−(a+b)|y|b
, x, y ∈ Rd, x ̸= y.

Then, integral operator

(Kϕ)(x) =

∫
Rd

k(x, y)ϕ(y)dy

is bounded in Lp(Rd) if and only if a < d/p and b < d/q, where q = p/(p−1)
is the dual exponent of p.

For f = t(f1, f2, f3, f4), we define the integral operator A by

(Af)(x) =
i

4π

∫
R3

α · (x− y)

|x− y|3
f(y)dy.

Since
i

4π
F−1

(
ξ

|ξ|3

)
(x) =

1

(2π)
3
2

x

|x|2
,

it is obvious that

F−1(Af)(x) =
α · x
|x|2

(F−1f)(x) = (α · x)−1(F−1f)(x) (3.3)
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Lemma 3.2.2. For any t ∈ (−3
2
, 1
2
), A ∈ B(L2,−t(R3),L2,−t−1(R3)).

Proof. The multiplication by ⟨x⟩t is isomorphism from L2(R3) onto L2,−t(R3).
It follows that A ∈ B(L2,−t(R3),L2,−t−1(R3)) if and only if ⟨x⟩−t−1A⟨x⟩t ∈
B(L2(R3)). The integral kernel of ⟨x⟩−t−1A⟨x⟩t is bounded by

1

4π⟨x⟩t+1|x− y|2⟨y⟩−t
.

Lemma 3.2.2 follows by applying Lemma 3.2.1 with a = t + 1, b = −t, d =
3, p = q = 2.

Lemma 3.2.3. Let −3/2 < s < 1/2. Then for any g ∈ L2,−s(R3) and
ϕ ∈ C∞

0 (R3\{0},C4), we have the identity;

⟨F−1(Ag), ϕ⟩ = ⟨F−1g,
α · x
|x|2

ϕ⟩. (3.4)

Proof. We note that both F−1g ∈ H−s−1(R3) and F−1(Ag) ∈ H−s−1(R3).
Indeed, the former is obvious by g ∈ L2,−s(R3) ⊂ L2,−s−1(R3) and the latter
follows since Ag ∈ L2,−s−1(R3) by virtue of the assumption g ∈ L2,−s(R3),
−3

2
< s < 1

2
and Lemma 3.2.2. Let ϕ ∈ C∞

0 (R3\{0},C4). Take a sequence
gn ∈ C∞

0 (R3,C4) such that limn→∞ ∥gn − g∥L2,−s = 0. Since A is continuous
from L2,−s(R3) to L2,−s−1(R3) by virtue of Lemma 3.2.2, it follows that

⟨F−1(Ag), ϕ⟩ = lim
n→∞

⟨F−1(Agn), ϕ⟩

= lim
n→∞

⟨α · x
|x|2

F−1gn, ϕ⟩

= lim
n→∞

⟨F−1gn,
α · x
|x|2

ϕ⟩

= ⟨F−1g,
α · x
|x|2

ϕ⟩.

Here we used (3.3) in the second step and that
α · x
|x|2

ϕ ∈ C∞
0 (R3\{0},C4)

in the final step. This completes the proof.

The following is an extension of Theorem 4.1 of [21] and plays an impor-
tant role in the proof of theorem.

Lemma 3.2.4. Suppose that f ∈ L2,−3/2(R3) and H0f ∈ L2,−s(R3) for some
s ∈ (−3

2
, 1
2
). Then, f satisfies AH0f = f .
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Proof. Since f ∈ L2,−3/2(R3) and AH0f ∈ L−s−1(R3) ⊂ L2,−3/2(R3) by virtue
of Lemma 3.2.2, it follows that F−1f,F−1(AH0f) ∈ H−3/2(R3). Thus, it
suffice to show that

⟨F−1(AH0f), ϕ⟩ = ⟨F−1f, ϕ⟩, for any ϕ ∈ H3/2(R3). (3.5)

Since C∞
0 (Rd\{0},C4) is dense in Hs(Rd) for s ≤ d/2, we need only prove

(3.5) for ϕ ∈ C∞
0 (R3\{0},C4). By setting g = H0f in (3.4) and using

F−1(H0f)(x) = (α · x)(F−1f)(x) for f ∈ L2,−3/2(R3), we have

⟨F−1(AH0f), ϕ⟩ = ⟨(α · x)F−1f,
α · x
|x|2

ϕ⟩

= ⟨F−1f,
(α · x)2

|x|2
ϕ⟩ = ⟨F−1f, ϕ⟩.

This completes the proof.

3.3 Proof of Theorem 3.1.3

We may assume 1 < ρ < 3 without losing generality. We apply well-known
Agmon’s bootstrap argument. Let f ∈ L2,−3/2(R3) and Hf = 0 in the

sense of distributions. Then H0f = −Qf ∈ L2,− 3
2
+ρ(R3) by the assump-

tion 3.1.1. Since −1
2

< ρ − 3
2

< 3
2
, we have AQf ∈ L2,− 3

2
+ρ−1(R3) by

virtue of Lemma 3.2.2. Then Lemma 3.2.4 implies f = AH0f = −AQf ∈
L2,− 3

2
+ρ−1(R3). Thus we may repeat the argument several times and obtain

f ∈ L2,− 3
2
+n(ρ−1)(R3) as long as −3

2
+ n(ρ− 1)+ 1 < 3

2
. Let n0 be the largest

integer such that −3
2
+ n0(ρ− 1) + 1 < 3

2
so that f ∈ L2,− 3

2
+n0(ρ−1)(R3) and

Qf ∈ L2,− 3
2
+n0(ρ−1)+ρ(R3), however −3

2
+n0(ρ−1)+ρ > 3

2
. Then for µ < 1/2

arbitrary close to 1/2, H0f = −Qf ∈ L2,µ+1(R3). Thus, f ∈ L2,µ(R3) by
virtue of Lemma 3.2.2 and Lemma 3.2.4. By differentiating, we have

H0⟨x⟩µf = −iµ(α · x)⟨x⟩µ−2f + ⟨x⟩µH0f

= −iµ(α · x)⟨x⟩µ−2f − ⟨x⟩µQf ∈ L2(R3).

It follows that F(⟨x⟩µf) ∈ L2,1(R3) which is equivalent to ⟨x⟩µf ∈ H1(R3).
This completes the proof of Theorem 3.1.3.
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