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1 Introduction

In this paper, we are concerned with “completeness problem” for logical functions realized
by asynchronous circuits.

Let & > 2 and Xy = {0,1,...,k — 1}. We denote hy Q; the set of all functions with
arbitrary numbers of variables defined over X;. We call elements of 2 (k-valued) logical
functions.

The classical completeness problem in logic theory deals with logical functions. A set
of logical functions is said to be functionally complete (or simply,complete) if it generates
all logical functions by composition. Several criteria have been given by E.L. Post [21] for
the binary case, and J. Slupecki [28] and J.W. Butler [1] for the general case.

S.V. Jablonskil [9] determined all maximal incomplete sets in Q3. I.Rosenberg [22, 23]
have refined these results by characterizing maximal incomplete sets for general cases.

A switching gate is an switching gate which receives input signals zy,...,z, and trans-
forms the input signals into the output signal y uniquely determined by the input signals.
The relation between input z1,...,z, and output y is represented by a logical function f
asy = f(z1,...,Zm).

But, in operations of switching gates there is a certain time-lag between the input and
the output. This “delay” is usually very small compared with the duration time of input
signals, and is often disregarded. In classical switching theory, “delay-less” functions are
considered as basic elements to construct circuits. In such circuits, feedback loops are not
allowed, since a loop of “delay-less elements” works contradictorily.

Admittance of “logical gate with delay” has a strong influence on the completeness.
In fact, J. von Neumann showed that NAND gate with unit delay can not generate all
logical functions[16]. Although the NAND function can generate all logical functions.
V.B. Kudryavcev [11, 12] considered the classical completeness problem by introducing a
“function with time delay”, i.e. a pair (f,d) of a logical function f and a nonnegative
integer d such a pair is called an indexed operator, which may be considered as a model of

a switching gate which carries out an operation in a definite time delay.
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A set ¥ of indexed operators is said to be ~-complete if for any logical function [
there exists a nonnegative integer d such that an indexed operator ( f,d) can be obtained
by composing the elements of the set ¥ “combinationally.” Let ® he a set of indexed

operators. We denote by ® the minimum set of indexed operators defined as follows:

A

1. (1,0) €

2. If (f,d) € @ and (g1, d'), ..., (gm,d') € ® then (h,d+d') € & for VA = f(gi,,- -1 i)

V.B. Kudryavcev gave a completeness criterion for the binary case by giving all the
maximal incomplete sets of these pairs explicitly. A.Nozaki [17] redefined this problem
in mathematically clear form and gave a criterion for the general case. T. Hikita [2]
obtained an effective criterion for ~-completeness and charactrizations of the maximal
incompleteness and he determined all the maximal incomplete sets in the ternary case.

We regard any circuit as a direct graph, i.e. a switching gate in a circuit is a vertex
and for two switching gates fi, f> in a circuit where an output of f; is one of inputs for f;,
(f1, f2) 1s a edge. A circuit C is said to be a sequential circuit if the graph defined by the
circuit C' admits cycles in graph theory. We call such cycles “feedback loops.”

However actual gates have always delay. Admittance of “feedback loops” has a strong
influence on the completeness [6, 7, 20]. For instance, a simple circuit shown in Figure 1
supplies the stable output “0”, only if it has received the input signal “0” in advance, once
for all. It should be noted that any “loop-free” circuit consisting of “AND” gates cannot
realize the constant function. This is why we consider the realization of logical functions
by sequential circuits, i.e., the circuits which may contain “feedback loops”.

K.Inagaki [6, 7] introduced several types of completeness of binary logical gates with
unit-time delay based on sequential circuits(ts-completeness,weakly t-completeness and f-
completeness). He gave completeness criterion for each type of completeness. A.Nozaki [17]
redefined this problem in mathematically clear form(S-completeness) and gave a criterion
for S-completeness.

A sequential circuit can be represented by simultaneous equations. For instance, the

sequential circuit shown in Figure 2 is represented as follows.
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Figure 1: Realization of the constant function ¢ by AND
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Figure 2: Example of sequential circuit

A J

yi(t+e) = filya(t),ys(t))
Yot +e2) = fa(z1,92(t))
ys(t +es) = fa(za, 23, 4:1()),

where the symbol y;(¢) stands for the signal y; at the moment ¢, and e; is a certain non-
negative integer representing the delay of the i-th element. Although the input signals are
usually given synchronously at the same moment, the operations of the gates in the circuit

may not be synchronized. So we have to study asynchronous circuits.

4



Indeed, asynchronous circuits have heen investigated from the viewpoint of electronics.
Huffman{3, 4] introduced a model of asynchronous circuits, which we call feedback-delay
model or Huffman model. Concepts related to his model, such as flow of states. hazard
and critical race have been studied. For example, . Main interests in Huffman model
are to explain characteristics peculiar to asynchronous circuits and the logical design for
asynchronous circuits. Muller introduced another model of asynchronous circuit, which
we call speed independent model or Muller model[15]. A circuit in Muller model dose not
have input and output signals. So main interests in Muller model are transitions of states
in an asynchronous circuit and “uniqueness of final state” in an asynchronous circuit.

So far completeness problem has not been investigated for asynchronous circuits. In this
paper, we shall give mathematical definitions of asynchronous circuits and the realization of
logical functions by means of asynchronous circuits. Our main purpose here is to solve the
completeness problem for multiple-valued logical functions realized asynchronous circuits.

First of all, we define several concepts such as an admissible sequence, stable output.
Our formulation for the realization of a logical function based on an asynchronous circuit
relies on these concepts. As regards an input assumption, we assume that input signals do
not change until a state of a circuit become stable. This formulation may be considered to
be a model of asynchronous sequential circuits, in which each switching gate carries out an
operation in a finite time delay. Introducing four types of completeness(LF-,GS-,GR-,NS-
completeness) of a set of logical functions, we give a completeness criterion of each type of
completeness. A set of logical function F' is said to be LF-complete if any logical function
g is realized by a “loop-free circuit” over F. A set of logical functions F' is said to be
GS-complete if any logical function g is realized by a sequential circuit over F with respect
to some non-empty set of states. A set of logical function F is said to be GR-complete
if any logical function g is realized by a “short feedback” circuit over F with respect to
some non-empty set of states. In GS-completeness and GR-completeness, we assume that
we can change the initial state of a circuit by some means. On the other hand, we may
assume that we can change the initial state of a circuit only by feeding a certain inputs to

the circuit. We call such inputs an initial sequence. A set of logical function F is said to
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be NS-complete if any logical function ¢ is realized by a sequential circuit over F' by some
initial sequence.

We prove that LF-completeness is equivalent to functionally completeness. We deter-
mine all maximal GS-incomplete sets for the binary case and the ternary case. Further
we obtain charactrizations of the maximal GS-incomplete set for the general case. We
determine all maximal GR-incomplete sets for the binary case. A completeness criterion
for GR-completeness is given under a strong condition for the general case. Finally, we

determine all maximal NS-incomplete sets for the binary case.
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2 Asynchronous Circuit

Let A(X, 1Y) be the set of all mappings from a set X to a set .
Definition 2.1 For the set X, = {0,1,---,k — 1}, let

(1) Qi = Map(X}, Xy)

(ii) Q= U2, U,

We call an elements of 2, (k-valued) logical functions. We denote by Const, the set

of constant functions on Xj.
A sequential circuit C is a system of simultaneous equations as follows:

yi = fl(yla"')ymaxly"'yzn)
yf? = fQ(ylv"'aymaxh"'ywn)

/

| v = falyn e Ymoise e, 20)

where f; represents the input-output behavior of the i-th element,whose current output
is denoted by y;, and z;,- -, 2, represent the “external” inputs given from outside of the
circuit. The first output y; is taken as the external output of the circuit C.

Let F' be a set of logical functions. The circuit C is called circuit over F iff all

component functions f;’s are in F.

Definition 2.2 A circuit is said to be loop-free iff the following condition is satisfied.
The v-th function f; depends only on y;y1, -+ ,Ym and 1, -+, x, for all i.

A loop-free circuit can be represented as follows:

y{ = fl(y27"'»ymaxla"'axn)
yé = f2(y37""ym7$17'“71‘n)
y‘:n = fm(xl,"'ql'n)



Definition 2.3 A circuit is said to be restricted sequential circuit (simply, restricted

circuit ) or short-loop circuit if the following condition is satisfied.

The output of an element may be connected to its own input terminal, but

no other feed-back loops are allowed.
A restricted sequential circuit can be represented as follows:

y; = fl(y17"'aym)$1""a$n)
yé = f2(y27"'-,ym7$1,"‘,$n)

y;ln = fm(ymvxl, e vxn)-
An m-tupley = (y1, -+, Ym ) is called state of the circuit C. An n-tuplex = (z, -+, )

is called input of the circuit C.

Definition 2.4 Let x = (21,---,2,) be an arbitrary input of the circuit C, let y =
(y1,--,Ym) and 2z = (z1,---,2n) be arbitrary states of the circuit C. We say that the
state of the circuit C can be transferred from y to z by the input x, iff

Yi
Z = or
fi(yh oy Yma T, 7xn)
for alli (1 €1 < n). This transition of states is denoted as follows.

X
y — Z.

If zz = fily1, Ym, @1, -, &n) for all i (1 < 1 < n), then we say the transition is

synchronous and denote it by z = [y(t)]x.

A circuit C is sald to be a synchronous circuit if any transitions of the circuit C are

synchronous. Otherwise we call the circuit C an asynchronous circuit.
Definition 2.5 An infinite sequence of state transitions

y(0) 2 y(1) D> y(2) =5 - T y(t) T -
is said to be admissible for an input x iff the following condition satisfied.
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Let tg be a non-negative integer and i a positive integer not greater than m.
Let ¢ be an element of Xy.. If fi(y(t).x) = c for all t > ty, then there exists an
integer T > to such that y(t) = c for any t > T, where y,(t) denotes the i-th
component of y(t).

Remark 2.6 [n actual circuit, we can assume the existence of a positive constant K sat-

isfying the following condition:
If fly(t),x) =cforT<t<T+ K , theny;(T+ k) =c.

Proposition 2.7 Let
y(0) = y(1) = y(2) = -

be an admuissible sequence.

(1) Any subsequence of the form:
y(T) Ey(T+1) S y(T+2) = -

18 also admissible.

X

(i) Ifz(0) = z(1) = 2(2) = -+ 55 2(t) and z(t) = y(t) then the combined sequence
z(0) =5 z(1) == 2(2) S - S z(t) Syt +1) Syt +2) -
is also admissible.
Proof

Obvious by Definition 2.5. O

10



3 Output Stability

Definition 3.1 A4 synchronous sequence for an input x is a sequence of the form:
y(0) S y(1) S y(2) = -
where y(t + 1) = [y(¢)]x for all non-negative integer t.
Remark 3.2 A synchronous sequence is always admissible.
Definition 3.3 An infinite sequence
y(0) == y(1) ~> y(2) = -
is said to be output stable iff there exrists a non-negative integer tq such that
Yilto) =y1(to +1) =y1(to+2) =+ .

The state y(to) is called the stable state of the sequence and the output y;(to) stable

output of the sequence.

Definition 3.4 Let ty be a non-negative integer. Let

X

y(0) = y(1) S y(2) = -

be an admissible sequence. If a state y(to) in the sequence satisfies the following simulta-
neous equation

v = Ay Yme T, Tn)

Y = f2(y17"'7ym,$1,"'axn)

Im = fm(yl,”'vym,xla"'axn) y
then we have y(to) = y(to+1) =y(to+2) =--- . We call such a sequence to be termi-
nating, and the state y(o) stable state.

Remark 3.5 4 terminating sequence is always output stable.
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Proposition 3.6 Every admissible sequence of a loop-free circuit is lerminating.
Proof

Let

X X

v(0) S y(1) S y(2) S Ey) S

be an admissible sequence of a loop-free circuit. By definition of admissible sequence, for

each 1 < m < m there exists t,, such that
Ym(t) = fm(z1,...,2,) for all t > t,,.
Assume that there exists tx,; such that
Yre1(t) = F(Yrea(tosr)s o Ym(tre1), 21,0 Ta)
ym(t) = flz1,...,2n)
for all ¢t > ¢441. Then there exists t; such that

yk(t) = f(yk+1(tk)7yk+2(tk)a---aym(tk)’xla"wxn)
Yesr(t) = flyrsa(te)s - Um(te), 1,0, Tn)

ym(t) = f(xla' . ~a$n)

for all ¢ > t;. By induction, we have

for some tp. O



4 Realization of Logical Functions by Asynchronous

Sequential Circuits

4.1 Realization

Definition 4.1 Let Y be a non-empty set of states. The circuit C' realizes a logical
function f in Qy, with respect to the set Y iff the following conditions are satisfied for any

nput X = (T1,...,Tn).

(1) Every admissible sequence starting from a state in Y for the input x is stable state ,
and its stable state is uniquely determined by the input x ,and its stable output is

always identical with f(zy,...,z,).

(ii) Let y,z be states. Ify € Y and y = z for some input X, then the state z is also in

Y.

Lemma 4.2 We consider two circuits C and C’, which realize the logical functions f and

g, with respect to the state sets Y and Y’, respectively:

yio= flyn. o Yme T Th)
(C) :
Um = Jo(yi,-o ¥m 21,0, 20),
vi = iy YT, T)
(C) '
e = G (Y1ye e Yrr L1y ey Ts)e
Then the circuit (C") defined below realizes the function f(g(xy,...,Zs),Tst1y ) Togn-1)

with respect to the set:

Y = {(a1, - Gm, b1y b) [ (1o r ) €Y and (by,...,b) € V')
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! g ; . p .
!/1 = jl(ylv"-vymvym+lv'[.9+lv'-'v-ls-i-n—l)
’ _ . . .
(C”) Ym - fnl(yl“"73/771-ym+1"ls+17-'-v-Ls+n—-l)
2! — p .
ym+l - .(Jl(ym+1~.'--:Z/m+rally~~-a-l's)
Iy — ., . . .
ym+r - gr(gm-}-ls'"7ym+7‘)x17"~7‘1's)'

Proof

After the output y,,41(¢) of the circuit C’ becomes stable, the circuit C' in C” evaluates
the value of

h(Yme1; Tst2s - o Tagn),
which is equal to

h(h(xh ce )xs~))7xs+1a cee axs+n—1)‘

4.2 Initialization

There are two contrastive initialization assumptions.

1. General Initialization Assumption

We can set the initial state of a circuit to an arbitrary state by some means.

2. Initialization-by-Input Assumption
We can change the initial state of a circuit only by feeding a certain input sequence

to the circuit.

We can use a circuit C for evaluating a function A if it realizes the function with
respect to some non-empty set ¥ of states under the general initialization assumption. Let
us consider a circuit C' which realizes a function h with respect to a set Y of states under
the initialization-by-input assumption. The circuit C' can not be used for evaluating the
function h practically, unless there is a finite sequence of inputs which can convert all state

of the circuit to some states in Y.
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5 Classical Completeness Problem

5.1 Functional Completeness

Definition 5.1 Let F,G be subsets of Q. We donate by F © G the set of all functions h,

each of which can be defined by a function f € F and functions ¢g1,...,g, € G as follows:
h= f(g1,---,gn)-
Definition 5.2 Let F' be a subset of Q. We denote:

FO = Fe{l}
Fr) = p-1) o p)
Fro= Uz, F)

Fo= (Fu{I}y,
where the symbol I stands for the identity mapping:I(z) = .
Definition 5.3 Let F be a set of logical functions.
(i) F is said to be complete iff F' = Q.
(ii) F is said to be incomplete iff it is not complete.
(iii) F is said to be maximal incomplete iff the following conditions are satisfied.

o F is incomplete.

o VF': F'' D F = F': functional complete

5.2 Examples of Complete sets

Example 5.4 In binary case, the following sets are known to be complete:

H, = {OR,NOT}

H, = {NAND}.
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Example 5.5 ([29]) In general case, Webb showed that the function webb can generate

all logical functions in Q.

webb(z,y) = max(x,y)® 1.

Definition 5.6 Let S be a subset of X;. We denote by sels(z,y,z) a k-valued logical

function defined as follows:

z ifzeS
sels(z,y,2) =
y otherwise

We call a function sels(z,y, z) a selecting function. We denote by Sel the set of all selecting

functions.

Proposition 5.7
sels(z,y,z) = selse(y, z, 2)

In this subsection, we shall explain logical functions generated by selecting functions

and constant functions.
Theorem 5.8 For any S = {z1,...,2Zn}, sels(z,y,z) can be composed by
sel(z}(2,,2),. .. s€lz}(2,9,2).

Proof

We consider the following equations:

0; = selgy(z,0i41,2) (1 <4< m)
Om4+1 = Y.
We can easily verify that o, = selg(z,y, z). 0

Theorem 5.9 The set of all selecting functions Sel is not complete.
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Proof

\We denote by f(xy,...,2,) a logical function which satisfies the following condition:

ar....,a,) € Xi such that f(ar,...an) & {a1,...,an}.
As an output value of a selecting function is equal to one of input values to it, f(z;.....x,)
can not be composed by Sel. 0

Proposition 5.10 For any a = (ay,...,a,) € X} and g, h € Qi, we define f;&g’h)  Xp -

‘Xk by

ifa=(ry,...,2
fe(lg’h)(mla---,xn)‘—"— g f ( 1 n)
h  otherwise.

f;gg’h)(éfb ..., Tn) can be composed by Sel, g and h.
Proof

We consider the following equations:

0; = f{a.*}(oi—lyh’xi) (1 < 1 < n)

O = (.
We can easily verify that oy = f™(z1,...,z,). O

Proposition 5.11 min(zy,...,%n) and max(zy,...,Tn) can be composed by Sel.
Proof

We define a logical function f7(zy,...,z,) by

? leE{IEl,,.Tm}
Flar,.rtm) =
g otherwise.

The following equations show that ff(z1,...,2n) can be composed by Sel.

0; = sel(y(zi, 0i41,2:) (1 <2< m)
Om+1 = g
[ = min(.ty...., ) and ' = max(r,,....¢,) show that

17



o le{r,...,tn)

[U < { = [() ¢ {.El,...,.vm}.

I'e{ry,....am}

<y = ly ¢ {;l'l,...,.’L'm}.

The following equations show that oy = min(z,...,2,) and of = max(z;,....2m).
Therefore the logical functions min(zy, ..., z,) and o) = max(z,,....,) can be composed

by Sel.

0; = fit 2y, 2m) (0<1<m)
Om+1 = I
o = fr(en.ee) (0Si<m)
O;n+1 = I

Theorem 5.12
[Sel] = {fe‘Qk 'f(mlw-'axm) € {xla""xm}}
Proof

For fe {fe Q| fl(z1,..-,2Zm) € {z1,...,Zm }}, werepresent f(z;,...,2n) in Table 1.

The following equations show that o(zy,...,2,) = f(z1,...,2n).

Oa = fa ! xl,“.,:vm) aEX,T

max{oa | 2 € X*}

2
A
13}
3
Il

Theorem 5.13 Let C = {c;;,...,¢;} C Consty.
(SeluCl={f €| flzy,...,zm) € {ciy,...,c;,Z1,. .., T} }.

Proof

18



Xy €T o Lo fley. o 2m)

0 0 0 €(0,0,..0) =

0 0 1 €0,0,..., 1y € {0,1}

0 0 o k=11 coo..k-1) € {0,k -1}

0 k=1 - k—=1|cpk-1..k-1)€ {0,k =1}

1 0 0 ¢(1,0,..0 € {0,1}

1 0 1 c,0..1) € {0,1}
k—1 0 s 0 C(k~1,0,...,0) € {0, k— 1}
k—1 0 ces 1 C(k-1,,..,1) € {0,1,k -1}
k-1 k—=1 - k—=1|Cr-1h1,h-1) =k —1

Table 1: Truth table of f
Now we use the same notation as in the proof of Theorem 5.12. For
flzy,o o zm) €{f €| flm1,. ., Tm) € {Ciyse oy T1,- Tm ]y

the following equations show that o(z1,...,2m) = f(21,...,2Zm).

féca’”ﬂn(”l""’x’"))(:cl, ey Tm) f(a)e {z1,...,2m},ae X

Oa

(ci, min(c; ,&1,..,Tm)) . -
Oa = fa e (Z1,...,2m) fla)=1j,a€ X[
o(z1,...,xm) = max{oa|a€ X[}

Now we obtain the following examples.
Example 5.14 1. Sel is incomplete.
2. SelU {¢; | 1 € Xk} is complete.
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5.3 Completeness Criteria
For the binary case, L. L. Post gave a powerful criterion as follows.

Theorem 5.15 ([21]) Let F be a set of logical functions. F' is functional complete iff it

is not contained in any set of the following five sets :
Mo, My, S, MS and L,
where

My = {feQ]f(0,...,0) =0}
My, = {fe|f1,. ..,1)=1}
S = {feQ| flzr,....za) = flay,...,2,)}

MS = the set of monotone non-decreasing functions

L = the set of linear functions.

Definition 5.16 Let p be an h-ary relation on Xj, i.e. a subset of the set X}'. We say
that f € M AP(X[", X\) preservers p if

(flarry s @m)s- -y f{Qp1y ooy Grm)) € p

whenever Y(ay;, ..., an;) € p.

For every h-ary relation p on X, we denote by Polp the set of all f € Q. preserving

For the ternary case, Jablonskii determined all maximal incomplete sets.
Theorem 5.17 ([8, 9, 23]) All the mazimal incomplete sets in Q3 are the following sets:
(1) D(i) = Pol({i}), where i € {0,1,2},
(2) D(i,§) = Pol({s,5}), where (z, ) = (0,1),(1,2),(2,0),

20



(3) C(0) = Pol

(4) C'(L) = Pol

(5) C(2) = Pol

|
|
(BIRIALE
(6>E(>p01{0,1,2,1
|
|
|

0 1 2 2
0 1 2 2
(7) £(1) = Pol , , ,
0 1 2 0
0 1 2 0
(8) E(2) = Pol , , :
0 1 2 1
0 1 2 2
(9) O(0) = Pol ) , ,
0 1 2 0
0 1 2 0
(10) O(1) = Pol , , ,
0 1 2 1

(11)0(2):%1{ VAL

({1 (22}

(13) L = Pol b llc=2(a+b) (mod3)

o) [ 2
Vo) Vo
LY (o
0o/ \1
2\ [ 1
RN AR




a
(14) S = Pol b ] {a.byc} |2
¢
For general case(k > 3). G.Rosenberg gave a powerful criterion as follows.
Theorem 5.18 ([23]) Each mavimal incomplete set in Qi is described in the form Polp
where p is one of the following relations on Xy :

(1) Every partial order of Xy with least and greatest elements.

(2) Every relation {(z,sz) | ¢ € X} where s is a permutation of X with f cycles of the

same prime length p.

3) Ewvery quaternary relation {(a;,aq,a3,as) € Xp | a1 +' a3 = a3 +' ay where < Xy, +' >
k

is a p-elementary abelian group,where p is a prime.
(4) Every non-trivial equivalence relation on Xj.
(5) Every central relation on Xj.

(6) Every relation Ay determined by an h-regular family T of equivalence relations on Xi

(h>2).

A subset F' of Qy is complete iff for every relation described under (1)-(6) above there

exists an f € F not preserving p.

Definition 5.19 Suppose that k = p™ where p is a prime. An Abelian group G = (X, ®g)
is an elementary p-group iff pG = {0}.

Definition 5.20 Let 1 < h < k. An h-ary relation p on X s totally reflexive iff p
contains any (ay,...,axr) such that ay,...,ap € Xy are not all distinct. p is totally sym-
metric iff (aq,...,an) € p implies (apq),-..,apn)) € p for any permutation p of the set
{1,2,...,h}. For a totally reflexive and totally symmetric relation p, the center of p is the
set of all ¢ € X such that (¢,az,...,an) € p for any aq,...,an. p is central iff p # X"

and its center (s non-empty.

8]
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Definition 5.21 Let 2 < h < k and let m < L. The famidy T = {0y,.... 0,1} of

equivalence relations on Xy, is h-reqular iff
1. each 0; has h equivalence classes (j =0,...,m — 1).

m=—1

2. the intersection NJZ5'e; of arbitrary equivalence classes ¢; of 0; (j =0,...,m —1) s

nonempty.
The relation determined by T is the relation Ay of all a1, ...,ax_, having the property that

for 0 <Vj <m at least two elements among ag, . ..,ap—; are equivalent in §;.

5.4 Completeness under “loop-free”

Definition 5.22 Let F be a set of logical functions. We denote by F the set of all functions

realized by loop-free circuits over F.

Definition 5.23 Let F' be a set of logical functions.

(i) F is said to be LF-complete iff F = Q.

(i1) F is said to be LF-incomplete iff it is not complete.

(iii) F' is said to be maximal LF-incomplete iff the following conditions are satisfied.
o F is LF-incomplete.
o VF': F' D F = F': LF-complete

We can show the following theorem immediately.

Theorem 5.24 Let F be a set of logical functions. F' is said to be LF-complete iff F is

complete.

Proof



Let I" and ¢ be subsets of ;. By Lemma 4.2, all h € F ) (7 are realized by loop-free
circuits over [7U G Since each f € F is realized by a loop-free circuit over £ Each
JEe(FuU {[})(") is realized by a loop-free circuit over F'. Therefore any f € [ is realized
by a loop-free circuit over F. It follows that functional completeness and LF-completeness

are equivalent. (]



6 Completeness under the General Initialization As-
sumption

Definition 6.1 Let F' be a set of logical functions. We denote by [[F] the set of functions.
each of which can be realized by a circuit over F', with respect to some non-empty set Y of

states.

Definition 6.2 Let F' be a set of logical functions.

(1) F is said to be GS-complete iff [F] = Q.

(ii) £ is said to be GS-incomplete iff it is not GS-complete.

(ii1) F s said to be maximal GS-incomplete iff the following conditions are satisfied.

o F is GS-incomplete.

o VF': F D F = F': GS-complete
Proposition 6.3 Let F' and F’ be sets of logical functions.
(i) FCFC[F]

(ii) F C F = [F] C[F]
(iii) F' C[F]= [FUF]=[F]
(iv) [[F]] = [F]

Lemma 6.4 Let [ be a surjective logical function. We can realize all constant functions

over {f}.

Proof



Since f is a surjection, Vi € X 3a;; € Xy such that f(a;...., dim) = L.

The constant function ¢ is realized by the following circuit with respect to the states

set Y= {(LIH1,..., [Fm~1)}:
yé) = f(yauﬁﬂl?”'vyaxm'@f)
yll = f‘(ya'll"&l’ AR ya’me'El)
yllc-—l = f(yakléBl’ ot 7yakm\:5[)‘
where @ denotes the addition in the ring Z/kZ. U

—— Selo\' —>

>

Se@ -

Figure 3: Realization of constant functions by sel



Example 6.5 Since cach function in Sel is a surjection, all constant functions are con-
structed by Sel.  [For instance, any constant function in Q3 is realized by the following
circuit(Figure 3):

yo = selo(yo,y2,y1)

yi = selo(y1,¥15¥o)

ya = selo(y2,92,90)-
By Example 5.14, Sel is GS-complete.

Lemma 6.6 Let f be a non-constant logical function. We can realize a constant function

over {f}.

Proof
We consider the following function: f*(z) = f(z,...,z).
(Case 1)

Suppose that f* is surjective. There exists m € N such that (f*)™ is the identity map.
Then the constant function ¢ is realized by the following circuit with respect to the states
set Y = {(/,...,D}

o= ()

v = [(ya)

(Case 2)

Suppose that f* is not surjective. We denote:

Ay = Xi

A, = Im(f*)* n>1
Since X, is a finite set, there exist m;,m; € N such that A, = A,, and m; > m,. Let
A = A, and m = m; — mg. The function (f*)™ | A is a surjection on A. By the same

arguments of Casel, we can realize constant functions ¢; ({ € A). O
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Theorem 6.7 Let p be an h-ary relation on Xy, If {(«,...,0) | v € Xy} Cp then Polp

is GiS-incomplete.
Proof

We counsider a logical function f(zy,...,,) realized by a circuit C over Pol p, with respect
to a state set Y.

X1

y(0) 22, y@2)(1) 2 y?)(2) X2, L X2, y 3 (1) X2,

Xhn Xh Xn
_ﬁ s .

y(0) =5 y®(1) = yM(2) =5 =y

are admissible sequences of the circuit C over Polp for inputs x; = (2;1,...,2im). We
assume that these admissible sequences are synchronous.

Assume that (z;1,...,2) € p for all 2. Since

{(CE,...,l‘) (‘T EXk} Cp,
(Yi,--.,y;) is an element of p for all . Suppose that (y§1)(t),...,y§h)(t)) € p. Since all
component functions f;” are in Polp and (zi1,...,2in) € p,
W+ 1), uM (1) €p.
By induction on ¢, (y{)(¢), ... ,ygh)(t)) € p for Vt. So f(zy,...,%m) preserves p. Therefore
a logical function which can be realized by the circuit C over Polp is in Pol p. 0

We can show the following proposition immediately.
Proposition 6.8 Let p be a relation. {(z,...,z) |z € X} C p iff Const, C Polp.
Theorem 6.9 Let F' be a mazimal incomplete set. F is GS-incomplete iff F O Consty.

Proof

Obvious by Theorem 6.7 and Lemma 6.4. O



Example 6.10 For the binary case, the following two sets are GS-incomplete.

1. The set L of linear functions

0 0
, . of all monotone non-decreasing
0 ! 1

2. The set MS = Pol
functions
For the binary case, we obtain a powerful criterion.

Theorem 6.11 ([26]) Let F be a set of logical functions in Q,. F is GS-complete iff it is
not contained in neither the set of linear functions nor the set of monotone non-decreasing

functions.
Proof

Suppose that F is not contained in L. Then there exists f € Q; \ L such that f is a

surjection. By Lemma 6.4, we can realize both co(z) and ¢;(z).
co(z), () € [FI.
On the other hand, the set F' U Const, is not contained in any of the following sets:
Moy, My, S, M= and L.
From Theorem 5.15 and Proposition 6.3,

[F]

[F U Const,|

D FUConst,

Qs

Example 6.12 For the general case(k > 2), the following sets are GS-incomplete.



Let p be a partial order on X, Since v < v, Const, C Polp.

Polp is GS-incomplete.

Let p be a quaternary relation {(xy,...,2q4) | 21 Fg T2 = 23 Fg T4}, Since &g =
v &g forVa € Xy, Const, C Polp.

Polp is GS-incomplete.

Let p be a equivalence relation. (z,z) € p for Vo € X,.

Polp is GS-incomplete.

Let p be an h-ary relation on Xi. Suppose that h > 2. If p is a central relation, then
{(z,...,z) € X}} C Pol(p).

Polp is GS-incomplete.

Let pr be a relation determined by T. For Vz € X, 2 and z are equivalent in some
@ € T. Then Const, C Polp.

Polp is GS-incomplete.

For the general case(k > 2), we obtain a powerful criterion.

Theorem 6.13 ([27]) Let F be a set of k-valued logical functions. F is GS-complete iff

there ezists an f € F not preserving p for every relation p described under (1) — (5) below.

(1) Every partial order of X with least and greatest elements.

(2) Every quaternary relation {(ai, az,a3,a4) € X2 | a1 +' a2 = a3z +' a4 where < Xi, +' >

is a p-elementary abelian group,where p is a prime.

(3) Every non-trivial equivalence relation on Xj.
(4) Every non-unary central relation on X

(8) Every relation A determined by an h-regular family T of equivalence relations on Xj.
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Proof

Let § be the the trivial equivalence relation on Xy, te. § = {(r.x) | ¢ € Xi}. Hence the

family T' = {0} is k-regular. The relation Ar determined by T is
{(al, coap) € XEiH{ag, .. Lar) < k} :

Since F' ¢ PolAr, there exists f € Qi such that f is a surjection. By lemma 6.4, we

can realize all constant functions.
Const, C [F).

On the other hand, there exists an f € F U Const;, not reserving p for every relation

p described in Theorem 5.18. Therefore

[F] [F U Consty)
D FUConst;

Q.

i

Corollary 6.14 Let F be a set of logical functions in Q3.

F is GS-complete iff it is not contained in any set of the following eleven sets:

(0

o
S—r
Q
~~
jav]
R

c(0) ¢
E(0) E(1) E(2)
0(0) Of
L S
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7 Completeness for Restricted Sequential Circuit un-

der the General Initialization Assumption

7.1 GR-completeness

Definition 7.1 Let F' be a set of logical functions. We denote by | F'] the set of functions,

each of which can be realized by a restricted sequential circuit over F.

Definition 7.2 Let F' be a set of logical functions.

(i) F s said to be GR-complete ¢f | F| = Q.

(ii) F' is said to be GR-incomplete iff it is not GR-complete.

(iii) F is said to be maximal GR-incomplete iff the following conditions are satisfied.

e F is GR-incomplete.

o VE' . F!' D F = F': GR-complete

Proposition 7.3 Let F and F' be sets of logical functions.
(i) FCFC|F] C[F)

(ii) FC F = |F| C | F']

(iii) F'C |F| = FUF C |F]

(iv) |F] C || F]]

(v) [F] =TF]

Example 7.4 Both of the constant functions co and ¢; are realized by circuits over {NOT}.

On the other hand, both of the constant functions are not realized by restricted circuits over

{NOT}.



Figure 4: Realization of constant function by NOT
Proposition 7.5 Let f be a k-valued logical function. Define f*(z) to be f(z,...,z). If
there exists xg € Xj such that f*(zo) = zo then we can realize the constant function c,.

Proof

The constant function c,, is realized by the following circuit with respect to the state set
Y = {(z0)}(Figure 5).
{ vi = fyn.-u)

- - -
Ci
Figure 5: Realization of a constant function by f*

Proposition 7.6 Let F' be a subset of Q. If F is GS-incomplete then F is GR-incomplete.
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Proof
Obvious, by Proposition 7.3 and Theorem 6.9. .

Example 7.7 [n the binary case, the sets MS and L are GR-incomplete, and the set S is

G R-complete.

Theorem 7.8 For cvery relation p described defined in the following (1) and (2). Pol(p)
is GR-complete.

(1) Every relation {(z,sz) |z € Xy} where s is a permutation of X with % cycles of the

same prime length p.
(2) Every unary central relation on X

Proof

Let p be a relation described under (1) — (2) above. Since the identity map I(z) € Pol(p),
we can realize all constant functions by restricted circuits over Pol(p). Then Consty C
|Pol(p)|. There exists a constant function ¢; such that ¢; € Pol(p). From Theorem 5.18,

Pol(p) is a maximal incomplete set. Therefore, Pol(p) is GR-complete. m

Theorem 7.9 Let F be a subset of Q. Suppose that Consty C F. F is GR-complete iff

F' is complete.
Proof

Suppose that F is incomplete. Then F' C Polp for some relation p described in Theo-

rem 5.18. Since Const, C F' and arguments in Example 6.12,F i1s GR-incomplete. O

7.2 GR-completeness criterion for the binary case
We define W = {f € Q, | f(0,...,0) =1, f(1,...,1) = 0}. By H we denote the set SNW.
Proposition 7.10 The set SN W is GR-incomplete.
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Proof

We consider a one-variable function A(r) realized by a restricted sequential circunt € over
H, with respect to a state set Y.

We will show that A(x) is either I(:x) or NOT(x), and cannot be Cy(x) or C'y(x). Assume
that the circuit C is the “minimum” one, having the smallest number of elements among

the circuits which realize h(z).
/

Yy = fl(y17y27"'7ym—1’ymvw)

/

Yo = fl(y2ay37"'~ym—--l7ymvm)

Y = fml(Ym,T):

(Stepl) We shall show that the value of the function f,,(ym,z) of the m-th element
is equal to NOT(z). Two cases are possible.

Case 1 f,,(0,0) = f.(1,0)

Since f,, s self-dual, we have:

fn(1,1) = fm(0,1).

Therefore, the first variable of f,,, is dummy, and we have:
fmly,z) = NOT(z).

Case 2 fn(0,0) = 1, fn(1,0) =0

Then we have:
fm(lv 1) = O’fm(oa 1) = 1.
Obviously, the output f,, is “unstable” for any input 0 or 1. This is a contradiction.

(Step 2) Let us examine the function f,-;. Since f, is identical with NOT, three

cases are possible.
Case 1 fr1(0,1,0) = fm_s(1,1,0) = a
Then we have:

fm-l(_l‘o’ ]-) = fm—l(ova 1) = a.
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Hence the output of y,,_, will eventually become « for input Vand @ for input 1.

e « =10

The stable output of f,_; is identical with [({x).

e =1
The stable output of f,,_; is identical with NOT(x). Since NOT(x) is given by y,,.

the (m — 1)-th element is redundant, against the assumption.

Case 2 fm_l(O, 1,0) = 1afm—1(17 1,0) =0
Then we have:

fm—-l(lvov 1) = Oafm—l(o’oe 1)=1.

In this case, the output of f,_; is “unstable” for any input. This is a contradiction.
Case 3 f,_1(0,1,0) =0, fr_1(1,1,0) =1

We can show the following fact.
We can assume without loss of generality that y,—; is identical with NOT(z).

So (m — 1)-th element is redundant, against the assumption.

Up to now, we have shown the following facts.
(1) fm(y,z) = NOT(z)

(ll) fm—l(yv NOT(:C),:IJ) = I(x)

(Step 3) If m is greater than two, then we can replace the variable y,,_; by z. This
is against the minimality assumption of the circuit C. Thus the number of elements is not

greater than two. Therefore,

NOT(z) it m=1

I(z) ifm =2

This completes the proof of the proposition.
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Remark 7.11 By Theorem 6.11, the set H is GS-complete.

Lemma 7.12 Suppose that I is not contained in L and H. Then we can realize both of

the constant functions Cy and Cy, by the circuits over F.
Proof

(Stepl) Let f be a function in Q, \ H. Suppose that f is a non-constant function.
Then f is a surjection. We define f'(z) = f(z, 2, --,z). If f'(z) is the constant function
C,.(z) then, we can realize the constant function C,(z). So we can assume that f'is a
non-constant function.

Case 1 f (z) = I(z)

By the same arguments as in the proof of Lemma 6.4, we can realize the constant
functions Cy and Cj.

Case 2 f'(z) = NOT(z)

Then we have:

f(0707" )0)

Il
-
g
-
e
ur-—|

I

o

Since f & H, f is not in S. Then there exists a binary sequence
a = (alva%”')an)

such that
f(a17a2a"' ,an) = f(a_l->a_2‘)7a-;) = a.

We denote:

N7

f (xlvx‘Z) = f(l'g_,al,l'g_a2, e 73:2—01”)'

Then the constant function Cy(z) is realized by the following circuit C’ with respect to the

state set

Y = {(e,1),(a,0)}

(see Figure 6) :
!/; = f”(y27x)

1

vy = f(a)

(€’



| v
e L) e A A

Figure 6: The circuit C’

4

(Step 2) Let g be a function in F'\ L. Then g is a surjection. We denote:

Case 1 g*(z) = I(z)

By the same arguments as in the proof of Lemma 6.4, we can realize the constant
functions Cy(z) and Cy(z).

Case 2 ¢g*(z) = NOT(z)

In Step 1, we have shown that a constant function C,(z) is realized by the circuit over

F'. Therefore we can realize the another constant function Cz(z)(see Figure 7).

Figure 7: Realization of Cz by ¢ and C,

Case 3 g*(z) = Co(z) or Cy(z)
By the same arguments as in the proof of Lemma 6.4, we can realize the constant .

functions Cy(x) and Ci(z).
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In this way, we can realize hoth of the constant functions Cy(x) and C({x). 0O

Theorem 7.13 Let I be a set of logical functions. F' is GR-complele tff it is not contained
i any three sets:

MS L and H.

Proof

(only-if part) Obvious by Proposition 7.7 and Proposition 7.10.
(if part) Suppose that F is not contained in L and H. By Lemma 7.12, we can realize
both of Co(z) and C(z).
Co(z),C1(x) € [F]

On the other hand, the set F U {Co(z), C1(z)} is not contained in any five sets:
Mo, M1, S, M= and L.

Therefore,

|F] 2 FuU{Co(z),Ci(x)} (by Proposition 7.3)
= Q. (by Theorem 5.24)
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8 Completeness under the Initialization-by-Input As-

sumption

8.1 NS-completeness

Definition 8.1 A circuit C is said to be terminating if and only if every admissible se-
quence of the circuit C' for every input, starting from any state is always terminating, and

its stable state is uniquely determined by the initial state and the input.
Definition 8.2 Let C be a terminating circuit. We denote by
C(y’ a(l)v a(2)> a(3), T a(t))

the final output of the circuit for the input sequence a(1), a(2),a(3),---,a(t), which is given

to the circuit in the following way.
(i) The first input a(1) is given to the circuit which is in the state y.

(ii) The i-th input a(i) is feed to the circuit after the circuit reaches the stable state for
the input a(i — 1).

The final output means the first component of the stable state for the final input a(t).

Definition 8.3 The circuit C evaluates a logical function h by an initial sequence x(—d), x(—d+

1),--+,x(—1) if and only if the following conditions are satisfied.
(1) The circuit C is terminating.

(il) For any input sequence x(0),x(1),---,%x(t) and any state y of the circuit C,

40



Lemma 8.4 Let C be a circuit. [f the circuit C evaluates a logical function h by an initial
sequence

x(—=d),x(=d+ 1),- -, x(=1),

then

h(x(t)) =
C(y,X(*T),X(—T+ 1)" t 7X(—d— l)a

X(—d),X(-—d + 1)a Tt ,X(—l),X(O),X(l), to ’X(t))
for any statey and any input sequencex(—T),x(—=T+1), -, x(—d—1) and x(0),x(1),- -, x(t).
Proof

Obvious by Definition 8.3. a

Definition 8.5 Let F' be a set of logical functions. We denote by (F) the set of all logical

functions, each of which is evaluated by a circuit C over F' by some initial sequence.

Definition 8.6 Let F be a set of logical functions.
(i) F is said to be NS-complete if and only iof (F) = Q.
(i1) F is said to be NS-incomplete if and only if it is not NS-complete.

(iii) F is said to be maximal NS-incomplete if and only if the following conditions are

satisfied.

o F is NS-incomplete.

o VF' . F'' D F = F': NS-complete
Proposition 8.7 Let F' and F' be sets of logical functions.
(i) FCFC(F)C[F]

(i) F'C F = (F) C (F)
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We can show the following lemma immediately.
Lemma 8.8 Let I be a subset of Q. Suppose that Consty C (F). Then

F U Const,; C (F).

| | |
| |
X0 ¢ )it
| |
| |

combinational circuit

i
|
1
|
t
1
i
|
I
{
|
i

contain feedback loops

Figure 8: A circuit easily initializable

8.2 Examples of NS-complete and NS-incomplete sets

Example 8.9 Let f € Sel. We consider the following circuit:

(C) {y/ = fi(y’x’ y)'

A constant function ¢; is evaluated by (C) by initial sequence (7). So Sel is NS-complete.
Since Sel C Pol(p) for every unary central relation p, Pol(p) is NS-complete.

Example 8.10 For the binary case, the sets MS and L are NS-incomplete because of

Proposition 8.7.



™1 Sel

Figure 9: Realization of constant function by sel

Example 8.11 Let p be a unary central relation. Since Sel C Pol(p), Pol(p) is NS-

complete.
Theorem 8.12 Pol(p) for every relation p described under (1) — (5) is NS-incomplete.
(1) Every partial order of Xy with a least and greatest elements.

2) FEvery quaternary relation {(a1,as,a3,a4) € X2 | a1 +' a = a3 +' a4 where < Xy, +' >
) k

is a p-elementary abelian group (p prime).
(3) Every non-trivial equivalence relation on Xj.
(4) Every non-unary central relation on Xy
(5) FEwvery relation Ap determined by an h-regular family T of equivalence relations on Xj.

(6) Every relation {(z,sz) | * € X} where s is a permutation of Xi with f cycles of the

same prime length p.
Proof

By Theorem 6.13, Pol(p) for p described above (1) — (5) is GS-complete. Since Proposi-
tion 8.7, Pol(p) is NS-complete.

Now we prove that Pol(p) for p described above (6) is NS-incomplete.

Let p, be a relation determined by a permutation o with f—) cycles of the same prime

length p. Let C be a circuit over Pol(p,).
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For (xy.....x,,) € X' and a permutation o, we define

(Treee o zm) = (oley)y. .. olan)).

The logical function & is evaluated by the circuit C' with initial sequences x(—d). .. .. x{—1).

is a synchronous sequence for the input x.

We consider the synchronous sequence starting y,(0) = y:(0)¢ for the input x°.

o xO' xO‘

y2(0) :)’1(0)0 RSN ——>y2(t) X,

Since the circuit C is over Pol(p, ), we can show that y,(t) = y{(¢) for Vi. Let m be an
order of ¢. From Lemma 8.4, we obtain
Cly?,x(=d)°,...,x(—=1)°,x(—=d),...,x(=1),x(1)°,...,%x(t)7)
= C(y,X(—d),...,X(—l),X(—d)a ,._,,X(-—l)a

( A(x(2)) )

h(x(t)")

_ ( Cly,x(=d), . x(=1),x(=d)*™ %=1 x(1), . . x(8) ) o
Cly?,x(=d)?,...,x(=1)°,x(=d),...,x(=1),x(1)%,...,x(¢)°)

i.e.

Therefor Pol(p,) is NS-incomplete. 0
Theorem 8.13 Let A be a proper subset of X,. We define
pa={(z,2") € X} |z # YU {(z,z) ]|z € A}.
Pol(p,y) is NS-incomplete.
Proof
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Let ¢ be a circuit over Pol(p,). Let o be a random permutation such that o(o(r)) =
rlorVaein Xy,

X

yl(O)———>-~~—x—>y1(t)———»--~

is a sequence for the input x. We consider the sequence starting y,(0) = y(0)7 for the

mput x7.
xa

y20) = y1(0)7 — - = yu(t) =— -

Since the circuit C is over Pol(p, 4),

y2(2)

where y; = (yi(1),...,yi(m)). Therefore, we can show that
Cly,a(l),...,a(t)
€ pa.
C(y’,a(l)?,...,a(t)?)
We assume that the circuit C evaluates the constant function ¢, such that v ¢ A by
initial sequence z(—d),...,z(—1). Then
Cly,z(=d),...,z(=1),0(z(=d)),...,o(z(=1)),z(1),...,z(t)) = v
C(y%,o(z(=d)),...,o(z(=1)),z(=d),...,2(~1),0(z(1)),...,0(2(t))) = wv.

Therefore

1e.
v
€ Pol(pa).
v
This is a contradiction to the definition of p4. a

Remark 8.14 Let A be a proper subset of X. We define 74 = {(z) | = € A}. Then
Pol(c4) C Pol(ry) and Pol(c4) # Pol(r4). The unary relation 74 is a central relation. So

Pol(r4) is NS-complete but Pol(c4) is NS-incomplete.
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8.3 NS-completeness criterion for the binary case

0 0 1
[VYO = pO l 3 Y

0 1 0

1 0 1
A/\Il = P 01 " )

1 1 0

The sets Ny and N, are NS-incomplete by Theorem 8.13. The set S is NS-incomplete

We define

by Theorem 8.12.

In the following,we denote by F' a set of logical functions.
Proposition 8.15 If F ¢ S then ¢y € (F) or ¢, € (F).
Proof

Let f € F'\ S. Then there exists (ay,...,a,) € XJ* such that

flay, ... aq) = f(al,...,al).

We define g(zo,z1) = f(@a;,-.-,%a,)- Then g(0,1) = ¢g(1,0). Three cases are possible.

Case 1(¢(0,0) = ¢g(1,1) = a)

In this case,¢'(z) = g(2, ) is a constant function ¢,. So ¢, € (F).

Case 2(g(0,1) = ¢(0,0) # g(1,1))

In this case, g(z,y) is either AND(z,y) or NAND(z,y).

If g(z,y) = AND(z,y) then the constant function ¢ is evaluated by the following circuit
Co by initial sequence (0).

(Co) {y" = AND(z,y) .

If g(z,y) = NAND(=z,y) then the constant function ¢y is evaluated by the following
circuit C;.
yi = NAND(y,,y2)
(C1) y5 = NAND(z,ys)
vy = NAND(z,2)
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S0 ¢y € ().
Case 3(¢(0,1) = ¢(1.1) # ¢(0,0))
In this case, g(x.y) is either OR(x,y) or NOR(a,y).
If g(x,y) = OR(x,y) then the constant function ¢; is evaluated by the following circuit
Cy by initial sequence (1).
(C2) {y' = OR(z,y) .
If g(x,y) = NOR(z,y) then the constant function ¢, is evaluated by the following circuit
Cs.
yi = NOR(ys92)
(C3)] v5 = NOR(z,ys)
y; = NOR(z,z)
So ¢y € (F). O

Remark 8.16 The circuits C; (i = 1,2,3) in proof of Proposition 8.15 are restricted se-

quential circuits,

Proposition 8.17 Suppose that F ¢ L. A two-variable non-linear function f belongs in
FuU{c,} for any constant a.

Proof

Case 1 (a = 0)
Let f be an n-variable non-linear function in F. If n = 2 then the f is two-variable

non-linear function. So we suppose that n > 3. By Galois’s expansion theorem(See [25]),

f(:EI’"-a‘En)
= ao@(al'xl@"'@an'xn)
Blay 21 22D a3 21 T3D Apeyn* Tney * Th)

@"'('Eal?---n'xl ..... In,

where @ and - denote the addition in modulo 2 and logical AND, respectively.
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We chose the minimum degree term @;) - -+ &;, whose degree is greater than two. We
define:
£z lt 1= il
wi = y ite=32<)<p)
0 otherwise,

g(J'aI/) = f(u)],...,wn).

Then the logical function ¢ is two-variable non-linear. Furthermore g¢(z,y) belongs to
FOTa].

Case 2 {a =1)

After replacing z; by X; @ 1, apply the same arguments in Case 1 to f'(X;,...,X,) =
f(Xi81,...,X,®1). Then we can show that there exists a two-variable non-linear function

which belongs to FF U {1}. 0

Proposition 8.18 If F ¢ Ny then either ¢; or g(z,y) = 2@y is contained in (F U {co}).

Proof

Let f € 2, \ F. Then there exists

U 0 1 0
- , y
Vg 0 0 1
such that
flug, o oyun) B 1
f('Ul, ey 'Un) 1
We define:

z ifu;=1,v,=0
wp = y ifu;=0,u;,=1
0 ifu; =v; =0,

g(;l?, y) = f(wla fee ,wn)-
Thereby g(r.y) belongs to FU {cy} and ¢(0.1) = g(1.0) = L.
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If g(0,0) = 1 then the circuit C; evaluates the constant function ¢; by initial sequence

(0). It g(1,1) = 1 then the circuit C; evaluates the constant function ¢, by initial sequence

(1).
(Cl){ y'o= gle,y)

If g(0,0) = g(1,1) = 0 then g(x,y) =2 B y. =

Proposition 8.19 [fF ¢ N, then either ¢y or g(z,y) = x@yd! is contained in (FU{c1}).

Proof

Let f € Q5 \ F. Then there exists

Uy 1 1 0
S y )
Vs 1 0 1
such that
f(ul, . ,un) _ 0
f(’l)l, ey 'Un) O
We define:

z fu;=1,v,=0
w; = y fu=0v=1
1 ifui-‘:’l),':l,

g(z,y) = flwr,...,wn).

Thereby g(z,y) belongs to F'U {¢;} and ¢(0,1) = ¢(1,0) = 0.
If ¢(0,0) = 0 then the circuit C; evaluates the constant function ¢; by initial sequence

(0). If g(1,1) = 1 then the circuit C; evaluates the constant function ¢; by initial sequence
(1)
e {v = g
If g(0,0) = g(1,1) = 1 then g(z,y) =z Dy D 1. ]
We define fipc(v,y) =z - yPa-zHb-ydcand g(z,y) = dy.
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Remark 8.20 The circuits C; in proof of Proposition 8.18 and Proposition .19 arc re-

stricted sequential cireuits.
Proposition 8.21 Suppose that f.g € (FU {co}). Then ¢y € (F U {cp}).
Proof

Case 1 (¢« =0,b=0)
In this case, the circuit C; evaluates the function A(z,y) = z-yHarpyLc. If ¢ =0 then
h(z,y) = OR(z,y). And if ¢ = 1 then h(z,y) = NOR(z,y). As a result, we can construct

the circuit over F'U {cg} which evaluates constant function ¢;.

v = 9(y2,¥s)
€)Y y2 = flzr,22)
ys = g(z1,22)
Case 2 (¢ =1,b=0)
In this case, the circuit Cy evaluates the function A(z,y). If ¢ = 0 then A(z,y) =
OR(z,y). And if ¢ = 1 then A(z,y) = NOR(z,y). As a result, we can construct the circuit

over F'U {co} which evaluates constant function ¢;.

Z/i = g(yz,ys)

S~y

(62) Y, = (%;1/'2)

ys = g(ys, 22)

yi = <

Case 3 (a=0,b=1)

In this case, the circuit C3 evaluates the function A(z,y). If ¢ = 0 then A(z,y) =
OR(z,y). And if ¢ = 1 then A(z,y) = NOR(=z,y). As a result, we can.construct the circuit

over F'U {cg} which evaluates constant function ¢;.

fl

Y1 9(y2,3)
Z/é = f(l"l, ifz)

yé = 9(531,;1/4)

o
Y9 = <o



Case 4 (a=1.b=1)
In this case. the circuit C; evaluates the function A(x,y). If ¢ = 0 then A(r,y) =
OR(x,y). And if ¢ = 1 then h(z,y) = NOR(«x,y). As a vesult. we can construct the circuit

over F'U {co} which evaluates constant function ¢;.

i = 9lyz,v3)
y,l, - f(l'[,l"z)
(AEES
Y = (Y, y4)

Yy = G

@ x| 8 )
Figure 10: Realization of OR or NOR by f, ¢ and ¢

By the same arguments in above proof, we can show the following proposition.
Proposition 8.22 Suppose that f,g® 1 € (FU {c¢,}). Then ¢y € (F U {co}).

Theorem 8.23 Let F be a set of logical functions. F is NS-complete iff it is not contained
in any of the five sets M<,L,S, Ny and Ny.

Proof

Assume that F is not contained in any of the five sets M<, L, S, Ny and ;. We can realize
either ¢y or ¢; because of Proposition 8.15.
If we can realize the constant function ¢y then we can realize another constant function

c¢; because of Proposition 8.17,Proposition 8.19 and Proposition 8.21. On the other hand,

¥
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if we can realize the constant function ¢; then we can realize another constant function
¢y because of Proposition 8.17.Proposition 8.19 and Proposition 8.22. As a result. we can
realize both of ¢y and ¢;,i.e. Const, C (F).

Hence U Const, is not contained in any of the five sets MS. LS. My and M. It

shows F7 is NS-complete by virtue of Lemma 8.8. a

N 4
o
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