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ABSTRACT
‘This paper will take a sceptical view of the conventional wisdom of the notion: “The
theory of marginal cost pricing suggests that the desirable level of traffic flow should
always be kept below the highway’s capacity for traffic flow.” This notion, originating with
A. A, Walters’ seminal 1961 article, is based on the interpretation that the marginal social
.cost is infinite when traffic flow reaches the highway capacity. However, this interpretation
is disputable, as earlier pointed out by P.K. Else.

Challenging the conventional notion, the paper will try to demonstrate that the marginal
:social cost actually has a positive constant value when traffic flow is at the level of highway
capacity. This implies the existence of a possible case that the optimal traffic flow level
-can coincide with the highway ecapacity.

The paper will also try to apply the marginal social cost pricing principle to the paradigm
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of demand-surface analysis through which we can theoretically investigate how the marginal
social benefit for highway users is effected by the quality level of highway services which
would vary depending on the level of traffic demand. The final section of this paper attempts
to synthesize (1) the approach developed for reformulating Walters’ notion and (2) the demand-
surface approach to get a tiny but new insight into the optimal congestion tax problems.

KEY WORDS
Congestion Tax, Demand-flow Conversion, Demand-surface, Else (P.K.),
Optimal Traffic Flow, and Walters (A.A))

1. Introduction

Highway traffic congestion in urbanized areas has long been recognized as a
technological external agglomeration diseconomy which generates a clear discrepancy
between the average social cost and the marginal social cost?’. Under a free market
system with neutral taxation, this kind of discrepancy usually brings about inefficient
allocation of a fixed highway capacity. For this type of market failure, it has been
shown that a Parato improvement in the efficiency of utilizing a highway can be
achieved if on all motorists® are levied congestion tolls® equal to the difference
between the average social cost and the margianl social cost corresponding to the
demand level which satisfies the condition that the marginal social benefit® is equal
to the marginal social cost.

The essence of the theory of marginal cost pricing, which serves as an important
basis for this argument, was originally conceptualized by Pigou (1920). His marginal
principle framework has been theoretically elaborated and empirically examined by
a number of transportation economists and transportation engineers® for the
account of highway congestion. Among those studies that have applied the marginal
principle is one by Walters (1961) in which he attempted to apply the principle of
marginal cost fare-setting to the services of congested highways in the U.S. For
this purpose, he set up a special analytical apparatus in which the average social
cost is expressed as a function of the volume of traffic flow. Diagrammatically
speaking, this setting makes the average social cost curve have its upper part
backward-sloping. Partly due to the curious characteristics of the average social
cost curve with a backward sloping part on it and partly due to the theoretical
importance of and interest in the marginal cost pricing principle, Walters’ work has
widely stimulated highway researchers into various types of studies dealing with
the optimal congestion tolls as a function of traffic flow. In this sense, Walters has
certainly made a fair contribution to the development of analytical scope for the
studies on the phenomena of highway congestion.

Walters’ work, however, suffers from two deficiencies. Firstly, his work shows
that the value of marginal social cost which is expressed as a function of traffic flow
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becomes infinite if traffic flow reaches the highway capacity®. But this shape of
marginal social cost function seems inadequate if we employ it for the purpose of
finding optimal congestion tolls. Secondly, the grounds for his criticism against Meyer,
Peck, Stenason, and Zwick (1959), who proposed that fares on urban roads in the
U.S. should be reduced, is rather insufficient. ‘This is because Walters’ criticism is
not a little based on the conception accruing from his misleading marginal social cost
function. It is also because the long-term problem of how best to allocate limited
transportation resources which Meyer and his collaborators tackled, is no less
important than the short-term efficiency problem of allocating a fixed highway
capacity which Watlers tried to investigate in his work.

This paper, in Section 2, illuminates the first deficiency found in the work of
Walters, and theoretically rectifies it without losing his original idea of investigating
the optimal level of traffic flow in terms of the marginal social cost which is expressed
as a function of traffic flow. In this section, the demand-flow conversion function
plays an important role. Section 3 sheds diagrammatic light on the same issue as
examined in Section 2, while a numerical example is given to clarify the basic concepts
canvassed in Sections 2 and 3. Section 5 discusses the paradigm of demand-surface
analysis. This approach explicitly draws into the analysis the quality level of road
services for a given highway which would vary depending on the level of traffic
demand. In the concluding Section is made an attempt to synthesize the demand-flow
conversion approach and the demand-surface approach.

2. Marginal Social Cost as a Function of Traffic Flow: Logic

Consider a mile-long, one-way expressway with a fixed capacity, located in amn
urbanized area. This expressway has neither entrance nor exit but at its two ends.
For this setting, let us assume the followings:

Assumption 1 4 )

Traffic is homogeneous, which implies that, with a given volume of traffic flow,

each vehicle driving along the expressway experiences éxactly the same speed

and cost. '

Assumption 2

Traffic density is the same all the way along the expressway at any point of

time, which implies that the dynamic adjustments of traffic density are made

instantaneously.

Under these assumptions, from the relationship between density and speed can
be derived the curve XX’ in Figure 1 as shown by Walters (1961, p. 679), presenting
the relationship between traffic flow and time of trip-mile. We can interpret this
curve as the average social cost curve” if we employ a unit time to measure “the time
of trip-mile” as cost-indicator. From this average social cost curve XX’ together
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with the following formula, Walters derived the marginal social cost curve shown by
the broken line MSC in Figure 1:

marginal social cost = average social cost
X (1-+elasticity of average social cost). =rereeoreses 1)

About the broken line curve MSC, Walters stated:

“It (ie, the curve MSC) rises above the unit cost curve (i, the average social
cost curve XX’)...... ; but when flow reaches F,,, the marginal social cost is
infinite. On the backward sloping part of the unit cost curve the marginal social
cost is nmot defined since the change in output is negative. |..... The theory of
marginal cost pricing suggests that taxes be levied to reduce demand until traffic
flow is at a level where private unit cost (with tax) is equal to marginal social
cost. Thus traffic flow should always be kept below capacity®.”

This interpretation seems inadequate. My opinion goes:

When flow is at the level of F,,,, the marginal social cost has a positive constant
value. On the backward sloping part of the average social cost curve, the
marginal social cost is defined. Accordingly, it is possible for the optimal traffic
flow® to coincide with capacity.

In order to furnish the grounds for this opinion of mine, observe that Equation
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1 follows the Pigou condition:

MC(Q) =AC(Q) -+ QX dAC(Q)/dQ’ ................................................... (2)

‘which provides

MCQ=ACQ) X [1+ (Q/ ACCQ) X {dACIQD/dQ L. wwrrrrssrrsesreresssee @

where Q, AC(Q), and MC(Q) respectively mean demand level'®, average cost, and
marginal cost.

The principle of marginal cost fare-setting suggests that the best allocation of
a fixed highway capacity can be achieved only for such traffic demand level that the
marginal social benefit is equal to the marginal social cost. This traffic demand level
shall be referred to as the optimal demand level. Then, the optimal congestion tolls
that would bring about the best allocation of a fixed highway capacity should be
equal to the optimal demand level multiplied by the value of derivative of the average
social cost with respect to demand level (for the formulation of Equation 2) or
equal to the average social cost at the optimal demand level multiplied by the value
of its elasticity (for the formulation of Equation 8). It should be noted that the
derivative in the 'second term of the right side of Equation 2 is the derivative of
the average cost with respect to Q (instead of with respect to traffic low F), and that
the elasticity in Equation 8 is the elasticity of the average cost with respect to @
(instead of with respect to traffic flow F).

The aforementioned would tell us that, for our purpose of finding optimal
congestion tolls, the marginal social cost curve which corresponds to the average
social cost curve XX’ in Figurel should be obtained through the following
formulation:

MSC,(F)=ASC, {G(F)} +G(F) X dASC {G(F)}/dG(F)
or

MSC(F)=ASCy(F)+G(F)XdASC{G(F)}/AG(F), +++++ersvrersrursrsranncs (4)
where MSC;( - ): marginal social cost as a function of F,

ASC;( - ): average of social cost as a function of F,

ASC,( - ): average social cost as a function of Q,

Q: traffic demand,
F: traffic flow,
Q=G(F): Q-F conversion function as shown, for instance, by Figure 1.

The broken line curve MSC in Figure 1 is likely to have been obtained through the
following formulation:

MSCF)=ASC;(F) +FX {dASC,(F)/dF}. +eeeererssssrsessssssansissansann, (5)

It can be easily noticed that there is a clear difference between the second term
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of the right-hand side of Equation 4 and that in Equation 5, The formulation
given by Equation 5, therefore, seems to be false for the analysis of the optimal
congestion tax. '

Meanwhile Else (1981) posed the same kind of question as have been addressed

in this paper, on Walters’ argument that the optimum traffic flow can not occur at

the

maximum traffic flow level of the expressway (i.e, at the level of the traffic flow

capacity of the expressway) since the marginal social cost is infinite. Else remarked!® :

- to the number of vehicles rather than the costs of adding to the traffic flow.

“(Walters’ theory) presupposes that the cost of adding to the traffic flow is the
relevant measure of marginal social cost. This may be doubted. ......
optimal level of traffic should be defined in terms of the marginal cost of adding
(It is because) a decision by an individual to use a road is essentially a decision
to add to the number of vehicles on that road, but whether or not it increases
the traffic flow depends on the volume of traffic already on the road . ...,
marginal social costs is supposed to) reflect the additional costs imposed by an
additional vehicle on a traffic already on the road.”

Based on this consideration, Else derived the marginal social cost curve which

is labelled M, as shown in Figure 8(b). This curve can be constructed, from the
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engineering relationship between traffic density D and journey time T as given by
Figure 3(a), in a way clearly indicated by the relations between the diagram in
Figure 3(a) and the diagram in Figure 3(b). Note that the curve My slopes back-
wards over the range where both traffic density level and traffic flow level are
increasing, but that it bends backwards as traffic flow level falls back from its
maximum capacity with the traffic density level continuing to increase.

Nash (1982) has argued that criticisms raised by Else are for the most part
unjustified and that Else’s redefinition of marginal social cost relative to numbers
of vehicles rather than flow can not be acceptable within the conventional theoretical
framework of economics since all demands relate to flows, not stocks. “Following
this argument” said Button and Pearman'®, “(they) support the conventional
position that a social optimum with flow at greater than the maximum is unattainable,
and thus it seems that Nash has re-established the authority of the conventional
wisdom in this case.”

I would think, however, that Else’s criticisms arguing that Walters’ analytical
approach incorrectly defines the marginal social cost curve is appropriate and so is
his rejoinder (1982) to Nash’s criticism (1982), and that Else should have the
credit of clearly pinpointing the shortcomings of Walters’ approach as well as of
having derived the backward-bending marginal social cost curve M in Figure 3. But
it should be noted that I would have some reservations about Else’s assumption that
an additionally generated traffic demand can be instantaneously absorbed into the
volume of traffic already on the road without any delay.

Despite the fact that Else derived the curve M, based on this debatable assump-
tion, I would think that the bending-backwardness of the marginal social cost curve
in the F-C dimension of Figure 3(b) still remains valid. The reasons to support
the validity of the bending-backwardness of the marginal social cost curve, have
already been abstractly discussed through Equation 4 in this Section, and shall be
furthermore discussed in a more concrete way in the following.

8. Marginal Social Cost as a Function of Traffic Flow:
Diagrammatic Approach

Now we are in a position to ask ourselves how to draw diagrammatically the
appropriate marginal social cost curve which corresponds to the average social cost
curve XX’ in Figure 1. In order to answer this question, let us introduce a
relationship between traffic demand @ and traffic flow F as given by the bell-shaped
Q-F conversion curve OP',CQ'® in Figure 2. The rationale of this curve would be:

(1) 1If the level of traffic demand which is generated for the road services of

the expressway for a specific period of time is low, say below ., then the
vehicle can drive along the expressway at the speed of the lowest cost?.
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At the same time, the vehicle does not have to wait at the entrance of the
expressway at all. We shall assume that Q. is the traffic demand level at
which traffic congestion begins to result in the slowing down of vehicle
speed.

(2) If the level of traffic demand is between @, and @;, then the vehicle speed
continues to slow down as the level of traffic demand increases, but the
vehicle does not have to wait at the entrance of the expressway. We shall
assume that @; is the level of traffic demand at which the queue of vehicles
starts to be observed at the entrance.

(3) If the level of traffic demand is between @, and @,, then the vehicle speed
continues to slow down as @ increases. The queue of vehicles is increasingly
observed. We shall assume that @, is the level of traffic demand at which
the level of traffic flow is maximized.

(4) If the traffic demand level is beyond @,, then the level of traffic flow con-
tinues to reduce as @ increases. The rather long queue of vehicles is
meanwhile observed. The traffic flow is almost at a standstill when the level
of traffic demand approaches C.

It should be mentioned that the above-mentioned rationale for the shape of Q-F
conversion curve should require the following two assumptions in addition to our
previous Assumptions 1 and 2:

Assumption 3

All traffic demand will be uniformly generated along time-axis during a specifie

period of time.

Assumption 4

There is no traffic congestion either in access roads to or in egress roads from

the expressway.

As to the cost element, we set the following two assumptions:

Assumption 5

The average social cost for the traffic demand level @ is the fuel cost necessary

for the vehicle to drive along the expressway from its entrance to exit at the

speed corresponding to the level of traffic flow which changes according to the
level of traffic demand Q9.

Assumption 6

Time loss, uncomfortability and other types of non-monetary external diseconomies

accruing from the highway congestion, shall be explicitly excluded from the

components of the average social cost!?).

Under our assumptions, it would perhaps be instructive to construct Figure 4.
Suppose we have, for the cost side, the average social cost curve ASC, as shown in
the second quadrant. Suppose furthermore that we have the Q—F conversion curve
as shown in the fourth quadrant. From the curve ASC,, we obtain in the second
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Figure 4 Traffic Demand (@), Traffic Flow (F), Average Social Cost (ASC),
and Marginal Social Cost (MSC)
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Demand Curve Order-Relationships
oDt oD} F*<F,<Fn
D2 Db F*<Fe=Fn
...... F¥=F,<Fp,
...... F,<F*<Fp,
¢Ds ¢ D5 Fe<F*=Fpn [Note] Fe: equilibrium level of traffic flow
D oD F.<F*<Fn Pt asimma el of ovcae Hom

Table 1 Order-Relationships among Fe, F* and Fy,

quadrant the marginal social cost curve MSC, through Equation 1. Now we can draw
curves of ASC; and MSC, as shown in the first quadrant from the curves of ASC,
and MSC, respectively, by use of the 45-degree line in the third quadrant and the
Q-F conversion curve in the fourth quadrant. The curve of ASC; is the average
social cost curve which is expressed as a function of traffic flow F, while the curve
of MSC; is the marginal social cost curve which is also expressed as a function of
F. From this settlng can be clearly seen the following characteristics which contradlct
the interpretation’ by Walters.

(1) Marginal social cost curve MSC; has the positive constant value at pont P,
when the traffic flow is at its maximum level F',, to which the traffic demand
level Q. correspond.

(2) On the backward sloping part of the average social cost curve ASCy, the
marginal social cost curve is defined as the curve of P}, P} Pp.

.For the demand side, suppose we have a traffic demand curve ,D, D as shown in
the second quadrant. From this curve we obtain the curve ,D,, D’ in the first
quadrant. This obtained curve is the traffic demand curve which is expressed as a
function of traffic flow F. Note that no part of the traffic demand curve presented
in the F-$ dimension shall appear, unlike the traffic demand curve shown in: Figure
3(b) by Else as well as in a number of other literatures, when the traffic flow level
is greater than the flow capacity F,, of the expressway, though this would not discount
Else’s credit that he has suggested that the marginal social cost would have the
shape of bending-backwardness as shown by curve My in Figure 3.

Be that as it may, it is now easy for us to identify the equilibrium level of traffic
demand @Q., the optimal level of traffic demand Q¥*, the equilibrium level of traffic flow
F,, the optimal level of traffic flow F*, as well as the optimal level of congestion
tolls P,T (in the second quadrant) or P;T” (in the first quadrant). Therefore, it
turns out that F* is the lowest among F,, F* and F, if the demand curve is given
by ¢D,¢D,. To explore other possible order-relationships among F,, F*, and F,, let
us introduce in the second quadrant of Figure 38 additional three alternative traffic
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demand curves; D, D%, ¢DsoD} and (D., D, Careful diagrammatic investigation of
those three curves and the demand curve D, D) as well, would provide us with
Table 1 which furnishes the information on order-relationships among F,, F* and F,,
for various demand curves. This table shows us the following third characteristic
that contradicts the interpretation by Walters:
(8) For the traffic demand curve ,D;,Dj5, the optimal level of traffic flow is
identical to the maximum level of traffic flow.

4. Marginal Social Cost as a Function of Traffic Flow:
Numerical Example Approach

Having shown both theoretical and diagrammatical explanations on the charac-
teristics of the marginal social cost function (as derivative of the total social cost
with respect to fraffic demand) expressed as a function of traffic flow, we now
proceed to a numerical example in order to see such characteristics more tangibly.
We shall begin by setting our notational definitions;

x : level of traffic demand to be generated per unit of time,
y : level of monetary amount, representing average cost, marginal cost, or price,
z : level of traffic flow per unit of time,

where 0=z=x.
Suppose that the average social cost function and the traffic demand function
are given in the z-y dimension respectively by:

y-—x-_—_o' .......................................................................................... (6)
y+x-—-5a/4—_—-0 ................................................................................. (7)

Suppose furthermore that the x-z conversion function (i.e., demand-flow conversion
function) in the z-z dimension is given by:

zta(z—a)=0 (for 0 =2=Za) }
z=0 (for >a)

where 0<a=s1®),
From Equation 6, we can derive the marginal social cost function in the -y
dimension:

In Figure 5 are shown line OA for Equation 6, line DE for Equation 7, curve
OBC for Equation 8, and line OM for Equation 9. By use of the z-y conversion
function as expressed by Equation 8, we can obtain from Equation 6 the average
social cost function for the y-z dimension:
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z—l—y(y—a)::o (O<a§1) ......................................................... 10

which is graphically shown by curve OFG in Figure 5. Caution is advised here:
the average social cost y expressed by Equation 10 as a function of the level of
traffic flow 2z, means the division of “the total fuel cost for the traffic demand level
x2” by “the traffic demand level z”” when the traffic flow level z corresponds to the
traffic demand level & through the 2-z conversion function expressed by Equation 8.

Also by means of Equation 8, we can obtain from Equation 9 the marginal
social cost function for the y-z dimension:

4z+y(y—2a)=0 (0 AS1), wrevrrerrnsrerernnrennnsttnnitiiiniiieeiien. 1)

which is graphically shown by curve OHI in Figure 5. It should be noted that the
marginal social cost y expressed by Equation 11 as a function of traffic flow level 2
is the derivative of “the total fuel cost y for the trafic demand level 2” with
respect to “the traffic demand level 2" when the traffic flow level z corresponds to
the traffic demand level z through Equation 8. At the same time, it should be
clearly kept in mind that Equation 11 does not imply “the derivative of the total
fuel cost y with respect to the level of traffic flow 29" that is given by:

y.__[{a_(az_42)1/2}/2_]_2(“2_42)-1/2]=0 ............................................. 19

which is graphically shown by curve OJ in Figure 5. The function expressed by
Equation 12 is a fallacious marginal social cost curve in light of our discussion in
Section 2. Comparing, in the y-z dimension, the y-value of the positive-slope part
of the marginal social cost curve OHI with the y-value of the “fallacious” marginal
social cost curve OJ, it can be pointed out that:

(1) The value of the “fallacious” marginal social cost curve OJ is always
greater than that of the “legitimate” marginal social cost curve OHI for
any positive level of traffic flow.

(2) The ratio of the y-value of the “fallacious” marginal social cost against the
y-value of the “legitimate” marginal social cost, increases as the level of
traffic flow increases. Their ratio would be, for example, 1.00 for z2=0+dz,
1.04 for z=a?/16, 1.10 for z=a2?/8, 2.00 for 2z=8a%/16, and infinity for
z=az/4,

From Equation 7, we can obtain by use of Equation 8 the traffic demand function

for the y-z dimension:

z+(y—a/H(y—5a/4=0 (for a/4=<y=<5a/4) }
z=0 (for 0=y<a/4 or y>5a/d

which is graphically shown by curve OKLD in Figure 5. As can be clearly indicated,
the optimal levels of traffic demand and traffic flow are equal to 5a¢/12 and 35q2/144
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respectively. The optimal level of congestion tax is equal to the length of line
segment P,T; or P,T, Therefore, the use of the fallacious marginal social cost
curve for the estimation of the optimal congestion tolls would lead us to the
unreasonably high overestimation for the optimal level of the congestion tolls,
-especially when the level of traffic flow is at or around the maximum capacity of
the expressway.

5. Demand-surface Analysis of Traffic Congestion

Thus far, we have examined the marginal social cost function associated with
the use of expressway, assuming that the demand curve for expressway services is
fixed to be independent of the change in the level of traffic demand. It would be,
however, more reasonable for us to consider the situation where the demand curve
‘would shift downward as the level of traffic congestion (ie, traffic demand level)
increases.

To meet this analytical rationale, it will be helpful to construct the demand-
surface as illustrated by Figure 6. In this diagram, the $-axis represents the cost
for consuming expressway services, the Q-axis the level of actual demand. and the
M-axis the level of premised demand. The actual demand @ has the same concept as
the demand level usually defined in the conventional textbook. The preposed word
“actual” is attached to this terminology simply in order to emphasize the difference
of the usual demand from the premised demand. The premised demand is a sort of
presumde demand, serving as an instrument to enable the (actual) demand curve
to shift flexibly as the level of traffic congestion varies.

For any given level of @, the height of the demand-surface with the shape of
a quarter-cut bullet remains the same for the case the presumed demand level M
falls within the range from zero to M,, and gradually reduces as the level of M
icreases from M, to F. If the level of M is greater then F, then no demand-surface
exists. For any given level of M, on the othre hand, the height of the demand-surface
becomes lower ag the level of Q increases. On the top of these, it should be noted that
the curve DBD), is the locus of the point (on the demand-surface) satisfying the
condition that @ is equal to M. In other words, the projection of the curve DBD)/,
against the Q-M plane forms the 45 degree line OED'; whose point E, for example,
corresponds to point B on the demand-surface. This point B in turn assures that the
actual demand level @, be equal to the premised demand level M,.

The verbal implications of these characteristics of the demand-surface given by
Figure 6 are (i) that the traffic runs smoothly before the demand level @ reaches
@, where the traffic congestion will start, and (ii) that the dead-congestion with
solid mass of immobile vehicles would take place when the demand exceeds the level
of F. More specifically speaking:
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(1) If each driver premises that the demand level for expressway services
would be zero (or nearly zero) and therefore can expect no traffic con-
gestion, then the (actual) demand curve is given by curve DD’.

(2) If each driver premises that the demand level would be M, and therefore
still can expect no traffic congestion, then the demand curve is given by
curve D, D, which is identical with curve DIV,

(8) If each driver premises that the demand level would be M, and therefore
should anticipate some degree of congestion, then the demand curve is
given by curve D,D, the height of which at any level of @ is lower than
that of curve DD’.

(4) If each driver premises that the demand level would be F and therefore
should anticipate no movement of traffic on the jammed expressway, then
there emerges no demand at all.

It is obvious that, as discussed in detail by Kawaghima (1975, 1981)2%, only
the points situated on the curve DBD, along the demand-surface can satisfy the
necessary condition to become an equilibrium point for a given cost-surface?? in the
Q-M-$ space of Figure 6. In this sense, the projection of the curve DBD), against
the Q-$ plane shall be called equilibrium demand curve. Figure 7 presents, by
curve DHG with the name of ED-curve, the equilibrium demand curve which corre-
sponds to curve DBD', in Figure 6. The demand curve DD’ in Figure 6 which can
be conceived when the premised demand level is between zero and M,, is also shown
in Figure 7 by curve DHD’ with the name of ¢(@, 0)-curve.

We have now arrived at the inevitable position of asking ourselves what kind
of shape the marginal gross consumers surplus (MGCS) curve?? would have in the
Q-3 plane of Figure 7 for the demand-surface given by Figure 6, since the MGCS
curve plays a key role together with the marginal social cost curve when we attempt
to find out the optimal level of congestion tax. In considering that the MGCS curve
is logically identical with the demand curve in the conventional approach of trans-
portation economics?®, and furthermore in light of the fact that each of the ED-curve
and the ¢(@, 0)-curve is anyway considered as a sort of demand curve, we may at
this point artlessly wonder whether the MGCS curve would be identical with either
curve DHG or curve DHD’ in Figure 7. However, this naive inference is misleading
as indicated in the following.

Suppose that a demand-surface function is given by:

S=g(Q, M. -++sreverssrmrerteriitiistie et (14

The equilibrium demand function, ED(Q), for this demand-surface is then expressed
as:

ED(Q)=g(Q, Q) +++eresrmsserseirmmimiiiniiiiiiniititiis st i)
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In this setting, the gross consumers surplus function, GCS(Q@), can be obtained
through integrating g(q, @) with respect to g from zero fo Q:

GCS(Q)=S:g(q, Q) AQPH) . vrevveerrunirniinttiiiiiir st sen {16
Hence, the marginal gross consumers surplus function, MGCS(Q), is given by:
MGCS(Q) =dGCS(Q)/dQ=d (S:g (g, Q)dq)/ P o RN m

One of the conceivable curves for the marginal gross consumers surplus expressed
by Equation 17, is provided in Figure 7 by curve DHH’ with the name of MGCS-
curve. Let us withal introduce, in addition to the ED-curve, g(@Q, 0)-curve, and MGCS-
curve in Figure 7, the average social cost curve ASC(Q) given by curve AKP and
its associated marginal social cost curve MSC(Q) given by curve AKL. From this
arrangement, it can be pointed out:

(1) The curve of the marginal gross consumers surplus is identical with the
equilibrium demand curve when the traffic demand level is under @,. It is
because no externality?®) exists at such a level of traffic demand.

(2) The curve of the marginal gross consumers surplus begins to situate below
the equilibrium demand curve when the traffic demand exceeds Q,, with
the separation between these two curves expanding as the level of traffic
demand increases. It is because external agglomeration diseconomies start
to emerge when the traffic demand level exceeds @,, with the magnitude of
diseconomies enlarging as the traffic demand level increases.

(8) By the same reason as for the relationship between the curve of the marginal
gross consumers surplus and the equilibrium demand curve, the marginal
social cost curve is identical with average social cost curve when the traffic
demand level is under Q,, while they start to separate from each other
when the traffic demand level exceeds Q,.

{4) A kind of agreeable symmetricalness?® is recognized with respect to the
cost side curves and the demand side curves as to the discrepancy of the
marginal value from its companion curvez?,

{5) The net consumers surplus is maximized when the marginal social cost
curve AKL cuts the marginal gross consumers surplus curve DHH’ at
point Y. Accordingly, the optimal level of congestion tax is equal to the
distance between X and Z2®,

{6) In case we assume that the demand curve which we conventionally use is
considered as, in a very strict sense, the equilibrium demand curve, then
the optimal level of congestion tax obtained through this conventional
demand curve is equal to the length between V and W?2®. This length is
considerably shorter than the correct optimal level of congestion tax
expressed by the length between X and Z.
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Figure 8 Numerical Example of Demand-surface Approach
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For the sake of ascertaining the reasonability of the above understandings of
ours, consider the numerical example for the demand-surface as given by:

——Q2/4+1 f 0SS M=1)

"(Q’M){ — @/ 41— (M—1) - asMs2)

From this, we can derive three major functions peculiar to the demand-surface
framework: .
(1) function for equilibrium demand:. ED(Q)=9(Q, Q)

——Q2/4+1 . - 0=Q=D
ED(Q){ 5Qz/4+2Q - (1=9s8/5)
(2) function for gross consumers surplus: GCS(Q) =S: 9(a, é}dq =
——Q/12+0Q . (0=Q=D
(8) function for marginal gross cppsumers surplus: M GCS (Q) dGCS(Q)/aQ
=—@Q+r - (OSQSD
MGCS(Q){ —13Q%/4+ 4@ - as QSl3/16)

Figure 8 dlagrammatlcally 111ustrates three curves: eqmllbrlum demand curve,
curve of margmal gross consumers surplus and traﬂ‘ic demand curve for the zero
premised demand level. These results of our numerical example3® for demand-surface
reflecting the existence of external diseconomies show: "

(1) The MGCS-curve is identical with the ED-curve when the traﬁic demand

level is below 1.

(2) The MGCS-curve begins to situate below the ED-curve when the traffic
demand level exceeds 1, with the discrepancy between them expanding as
the traffic demand level increases.

(3) The ¢g(Q, 0)-curve is identical with both MGCS-curve and ED-curve when
the traffic demand level is below 1. Both MGCS-curve and ED-curve begin
to situate below the g(Q, 0)-curve when the traffic demand level exceeds 1

6. Conclusion: Synthesis

In the preceding sections, we have first studied how both the average social cost
function and the marginal social cost function for expressway services can be
presented in terms of the traffic flow level. The Q-F conversion function has been
found to be of significant assistance to that kind of study.

We have then discussed the demand-surface method to be employed, in order
to take explicit account of the effects of traffic congestion as external agglomeration
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Figure 9 Synthesis

diseconomies upon the demand function for expressway services. One of the striking
characteristics of the demand-surface approach is that it would enable us to enjoy
the economic analysis of traffic congestion in a scientifically aesthetic way. That is,
from the demand-surface approach emerges interesting symmetricalness with respect
to the side of cost function and the side of demand function as to the relative
position of the marginal curve against its corresponding average curves?. It has
been demonstrated that, due to this symmetricalness, the optimal level of congestion
tax derived through the demand-surface approach is larger than that derived through
the conventional approach.

Pursuing the task of synthesizing outcomes from our twin investigations (i.e.,
one based on Q-F conversion function approach and the other based on demand-
surface approach) in this paper, we construct Figure 9 which shows how the
four curves in the Q-$ dimension (ASC for average social cost, MSC for marginal
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social cost, ED for equilibrium demand, and MGCS for marginal gross consumers
surplus) look like once they are transformed into the F-$ dimension. Their corre-
sponding curves in the F-$ dimension are, ASC" for ASC, MSC’ for MSC, ED’ for
ED, and MGCS’ for MGCS. 1t follows from this diagram that the level of the optimal
congestion tax in the Q-$ dimension is equal to the distance between X and Z. This
level of congestion tax would bring about the optimal traffic demand Q* which
corresponds to point Y where the MSC curve cuts the MGCS curve. It also follows
that in the F-$ dimension, the optimal level of congestion tax is equal to the
distance between X’ and Z’ bringing about the optimal traffic flow F* which corre-
sponds to point Y’ where the MSC’ curve cuts the MGCS’ curve.

In concluding this paper, the scientific stimulation which I have received especially
from papers by Walters (1961) and Else (1981) is gratefully acknowledged.

NOTES

1) In this paper, the term of average social cost could be interchangeably used with
such words often appearing in transportation literature on highway traffic congestion
as average user cost (or simply, average cost), average consumers cost, private unit
cost (or simply, unit cost), or marginal private cost. The term of marginal social cost
could, on the other hand, be interchangeably used with that of “marginal social cost
for users.”

2) Throughout this paper, the term of motorist could be interchangeably used with the
words of highway user, vehicle operator, car driver, vehicle, car, or automobile.

3) The term of congestion tolls could be interchangeably used in this paper with that of
congestion taxes.

4) In the first four Sections of this paper, the marginal social benefit curve is treated as
to be identical to the conventional demand curve.

5) For theoretical discussion of optimal congestion tolls, see for example, Knight (1924),
Walters (1954, 1961), Beckmann, McGuire, and Winsten (1955), Buchanan (1956),
Meyer, Peck, Stenason, and Zwick (1959), Mohring (1964), Johnson (1964), Vickrey
(1965), Jansson (1969), Else (1981), and Button and Pearman (1983). For empirical
works relating to the estimation of optimal congestion tolls, see for example Mohring
(1964), Johnson (1964), Walters (1961), Smeed (1968), Jansson (1969) and Dewees
(1979).

6) The highway capacity here would mean the physically possible maximum level of
traffic flow of the highway under consideration.

7) The process to derive this bending-backward average social cost curve, can be diagram-
matically explained through Figures N-1(a), N-1(b), and N-2. See Walters (1961),
Vickrey (1965), and Button and Pearman (1983) for reference.

8) Walters (1961, p.680).

9) The optimal traffic flow should be regarded as the level of traffic flow at which, the
marginal social benefit with respeet to traffic demand is equal to the marginal social
cost with respect to traffic demand. The marginal social benefit could be defined as
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[Note] C: fuel cost

10)

11)

12)
13)
14)

V: speed (or velocity)
F: traffic flow
CoINP: average social cost curve

Figure N-2 Traffic Flow and Fuel Cost

marginal gross consumers surplus,

This demand level could be replaced by, for instance, production level or sales level
depending on the purpose of study.

This difference can also be exhibited by rewriting Equations 4 and b as follows:

MSC;(F) = ASC,(F) X [1+ G(F)/ASC;(F) X dASC.{G(F)}/dG (F)]- -+ 1)
MSC;(F) = ASC,(F) X {14 F/ASC;(F) X dASC(F) /AF} ererereresesrsusenens %)

Equation 5’ is analogous to Equation 1. But this analogy is deceptive, and it is illegiti-
mate to apply Equation 1 to calculate the marginal social cost. Only exception for
this is the case when F' is always equal to Q, implying that all traffic demand can be
smoothly absorbed into traffic flow without any queue at the entrance point of the
eXpressway.

Else (1981, pp. 220-221).

Button and Pearman (1983, p.21).

Among other possible forms of the Q-F conversion curve are those as presented in
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Figure N-3 Possible @-F Conversion Curves

Figure N-3. The author is presently conducting a primitive but fundamental simula-
tion experiment to identify the suitable functional form for a standard @-F conversion
curve,

We shall assume that the maximum speed limit of the expressway is such that the
fuel cost is minimized. Therefore, if the speed reduces from the maximum speed
limit, the fuel cost is postulated to increase.

If we want to include into the average social cost the “fuel cost for idling the engine
of the vehicle” necessary for waiting at the entrance point of the expressway when @
(i.e., traffic demand generated per unit of time) is greater than F (i.e., traffic flow
observed per unit of time), then the average social cost shall be given by:

“average fuel cost necessary for driving when the traffic demand level is Q”
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plus “C; X W(@)”
where Ci: fuel cost for idling the engine per unit of time,
W(Q): expected waiting time at the entrance of the expressway
when the traffic demand level is Q.

These external diseconomies are exclusively reflected by the demand-surface which will
be discussed in the later section. As can be seen from that section, the approach demon-
strated in this paper is different from the ordinary approach which requires both
average cost curve and demand curve to reflect such diseconomies.

This condition for the value of “a’” is necessary to ensure the traffic flow level z to
be always less than or equal to the traffic demand level «.

“The derivative of the total fuel cost ¥y with respect to the traffic demand level z” is
jdentical to “the derivative of the total fuel cost y with respect to the traffic flow level
z” only when all the volume of generated demand traffic can be instantaneously
absorbed into the volume of traffic flow.

He developed these papers under the stimulug of Buchanan (1965) and Rabenau and
Stahl (1974) at the initial stage in conceptualizing his ideas on the demand-surface
framework.

One of the simplest functions for the cost-surface would be given by:

$=a+0Q*+0xM (a,b =0).

This curve is considered in this paper as the marginal social benefit curve as explained
earlier.

If the demand curve is given by $ = g(@Q), then the MGCS curve can be obtained as
follows to become identical to the demand curve:

MGCs@ =a{|'g(adda}/d@=g(@.

Note that, in the demand-surface framework, GCS(Q) can not be obtained through
integrating the equilibrium demand function ED(q) with respect to ¢ from zero to Q.
Exception for this is the case where the shape of g(Q, M) remains the same for all
M, when we can obtain GCS(Q) by simply integrating ED (¢q) with respect to ¢ from
zero to Q@ in the same way as we obtain the gross consumers surplus by integrating
the demand function D(q) with respect to g from zero to Q@ in the conventional
approach.

More precisely, “no externality” means here “neither external agglomeration economies
nor external agglomeration diseconomies.”

This kind of symmetricalness with respect to a pair of cost side curves and a pair of
demand side curves does not come out in the conventional approach for the analysis
of the optimal congestion tax. It is because, in the conventional approach, the curve
of the marginal gross consumers surplus is usually supposed to be identical to the
demand curve. Therefore no pair of curves exists for the demand side, but there exists
only one curve for the demand side.

The companion curve for the marginal social cost curve is the average social cost
curve, while that for the marginal gross consumers surplus curve is the equilibrium
demand curve.

Note that the optimal level of congestion tax is neither equal to the distance between
V and W which corresponds to the intersection V where the marginal social cost curve
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Case 1:

Case 3:

9(Q, M=a(1—Q/5)M (a,5>0) 9(Q. M)=—(M—1)*+2+0%XQ
ED(Q)=aQ—aQ*/b ED(@Q)=—(Q—1)*+2
GCS(Q)=aQ*—aQ*/(2b) GCS(Q)=—@*+2Q°+Q
MGCS(Q)=2aQ—3aQ*/(2b) MGCS(@)=—3@Q*+4Q+1
Case 2: Case 4
9(Q, M)=—aQ/b—aM/c+a (a,b,¢c>0) 9(Q, MD=1—Q*—(M—1/2)?

ED(Q)=—aQ(1/b+1/c)+a
GCS(Q)={—aQ*(A/b+2/c)+2aQ}/2
MGCS(Q)=—aQ(1/b+2/c)+a

ED(Q)=—2Q*+Q+3/4
GCS(Q)=—4Q*/3+Q*+3Q/4
MGCS(Q)=—4Q*+2Q+3/4

[Note] Q: actual demand level
M: premised demand level
g(Q, M): demand-surface function
ED(Q): equilibrium demand function
GCS(Q) : gross consumers surplus function .
MGCS(Q): marginal gross consumers surplus function

Table N-1 Examples of Demand-surface

cuts the equal demand curve, nor equal to the distance between. L and N which
corresponds to the intersection L where the marginal social cost curve cuts the demand
curve corresponding to the premised demand level being equal to zero.

29) It is because MSC-curve cuts the ED-curve at point V.

30) Other numerical examples are shown, for reference, in Table N-1, Case 1 takes into
account the exclusive existence of external agglomeration economies, while Case 2 is
for the exclusive existence of agglomeration diseconomies. By Cases 8 and 4 are
presented the situations in which external agglomeration economies and diseconomies
are both involved. Four demand-surfaces and their associated ED-curves and MGCS-
curves are diagrammatically illustrated for each of these cases by Figure N-4.

31) For the cost function side, we have a pair of curves; the marginal social cost curve
and the average cost curve. A pair of curves for the demand function side are the
marginal gross consumers surplus curve and the equal demand curve which can be
regarded as average revenue curve from the viewpoint of suppliers.
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