A NOTE ON THE RIEMANN MAPPING THEOREM

Tadasu Chiba

ABSTRACT.

The object of this note is to prove that the set of normalized conformal mappings which satisfy the Riemann Mapping Theorem is homeomorphic to a region of definition.

The Riemann Mapping Theorem [1] states: given any simply connected region Ω which is not whole plane, and a point $a \in \Omega$, there exists a unique analytic function f_a in Ω, normalized by the conditions $f_a(a) = 0$, $f_a'(a) > 0$, such that f_a defines a one-to-one mapping of Ω onto the open unit disk $D = \{ w | |w| < 1 \}$.

We denote the set of these functions by $\mathcal{F}(\Omega)$, i.e., $\mathcal{F}(\Omega) = \{ f_a | a \in \Omega \}$. For any $f, g \in \mathcal{F}(\Omega)$, we shall define a distance $d_0(f, g)$ between these functions. For this purpose we need, first of all, an exhaustion of Ω by an increasing sequence of compact sets $K_n \subset \Omega$. By this we mean that every compact subset K of Ω shall be contained in a K_n. Let

$$K_n = \{ z | z \in \Omega, \ |z| \leq n, \ d(z, C - \Omega) \geq 1/n \}.$$

Then $K_n \ (n \geq 1)$ satisfy two conditions

1. $K_n \supseteq K_{n+1}$
2. $\Omega = \bigcup_{n=1}^{\infty} K_n$.

And it is clear that each K_n is bounded and closed, hence compact. Any compact set $K \subset \Omega$ is bounded and at positive distance from $\partial \Omega$; therefore it is contained in a K_n.

We set

$$p_n(f, g) = \sup_{z \in K_n} | f(z) - g(z) | = \max_{z \in K_n} | f(z) - g(z) |$$

for $f, g \in \mathcal{F}(\Omega)$, which may be described as the distance between f and g on K_n.

-19-
Finally, we agree on the definition
\[
d_0(f, g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(f, g)}{1 + p_n(f, g)}
\]

It is clear that \(d_0(f, g)\) is finite and satisfies all the conditions for a distance.

By this definition we obtain next lemma:

LEMMA 1. For sequence \(\{ f_n \}\) of \(\mathcal{F}(\Omega)\), the following two conditions are equivalent:

(*) \(\{ f_n \}\) converges to \(f\) in the sense of \(d_o\)-distance, i.e., \(\lim_{n \to \infty} d_o(f_n, f) = 0\),

(**) \(\{ f_n \}\) converges uniformly to \(f\) in the wider sense on \(\Omega\).

PROOF. (*) \(\Rightarrow\) (**):

If \(K\) be any compact set of \(\Omega\), we have \(K \subset K_n\), for large \(n\). For each \(\epsilon > 0\), if we set \(\delta > 0\), \(\frac{\delta}{1 - \delta} < \epsilon\), then we can suppose
\[
d_o(f_k, f) < \delta / 2^n,
\]
for all \(k\) greater than a certain \(K_o\), because \(d_o(f_k, f) \to 0\).

Then
\[
\frac{1}{2^n} \cdot \frac{p_n(f_k, f)}{1 + p_n(f_k, f)} < d_o(f_k, f) < \delta / 2^n,
\]
and we obtain
\[
p_n(f_k, f) < \frac{\delta}{1 - \delta} < \epsilon.
\]

Finally we have
\[
|f_k(z) - f(z)| \leq p_n(f_k, f) < \epsilon
\]
for all \(k\) greater than a certain \(k_o\) and \(z \in K\). It follows that the convergence is uniform on \(K\).

(**) \(\Rightarrow\) (*):

Given any \(\epsilon > 0\), we can choose an integer \(n\) such that
\[
\sum_{k=n+1}^{\infty} 1/2^k < \epsilon / 2.
\]
Furthermore we take a small $\delta > 0$ such that $\frac{\delta}{1-\delta} < \varepsilon/2$.

By the uniform convergence on a compact set K_n,

$$|f_k(z) - f(z)| < \delta \quad (k \geq k_0, z \in K_n).$$

Then

$$p_n(f_k, f) \leq \delta, \quad \frac{p_n(f_k, f)}{1 + p_n(f_k, f)} \leq \frac{\delta}{1-\delta} < \varepsilon/2.$$

We note $p_m(f_k, f) \leq p_n(f_k, f)$ when $1 \leq m \leq n$. Now it follows that

$$d_o(f_k, f) \leq \sum_{n=1}^{\infty} \frac{1}{2^m} \cdot \frac{p_m(f_k, f)}{1 + p_m(f_k, f)} + \sum_{m=n+1}^{\infty} \frac{1}{2^m} < \frac{\varepsilon}{2} \sum_{m=1}^{n} \frac{1}{2^m} + \frac{\varepsilon}{2} < \varepsilon$$

for all $k \geq k_0$, and the lemma is proved.

Let us define a function $F: \Omega \rightarrow \mathcal{F}(\Omega)$ as follows:

$$F(a) = f_a.$$

It is clear that

LEMMA 2. F is one-to-one mapping of Ω onto $\mathcal{F}(\Omega)$.

We now prove

LEMMA 3. F is continuous mapping on Ω.

PROOF. Since Ω, and $\mathcal{F}(\Omega)$ are metric space it is sufficient to show that the sequence $\{ F(a_n) \}$ converges to $F(a_o)$ in $\mathcal{F}(\Omega)$ for any sequence $\{ a_n \}$ of points Ω which converges to a point $a_o \in \Omega$. We let denote

$$F(a_n) = f_n, \quad f_o(a_n) = b_n, \quad (n = 0, 1, 2, \ldots).$$

Since $\lim_{n \to \infty} f'_o(a_n) = f'_o(a_o) > 0$, there exists a positive integer N such that

$$|f'_o(a_n)| > 0 \quad \text{for all} \quad n \geq N.$$

Therefore, for each integer $n \geq N$, there exists a sequence $\{ k_n \}$ such that

$$|k_n| = 1, \quad k_n f'_o(a_n) > 0, \quad \text{and} \lim_{n \to \infty} k_n = 1.$$

For example, $k_n = \exp (-i \arg f'_o(a_n))$, $(n \geq N)$.

We can find the fact

(A). For each $n \geq N$, $k_n f_o$ is an analytic function of Ω onto D, and the sequence $\{ k_n f_o \}$ converges to f_o uniformly in the wider sense on Ω.
Now for each $n \geq N$, we put $c_n = k_nb_n$, and consider an analytic function g_n of D onto itself such that

$$g_n(c_n) = 0, \quad g_n'(c_n) > 0.$$

Let us consider the composed function $h_n = g_n(k_nf_o)$, for each $n \geq N$. Figure (*) shows the relations of these functions. Then, each h_n is an analytic function of Ω onto D.

Moreover,

$$h_n(a_n) = g_n(k_nf_o(a_n)) = g_n(c_n) = 0,$$

$$h_n'(a_n) = g_n'(k_nf_o(a_n)) \cdot k_nf_o'(a_n) = g_n'(c_n) \cdot k_nf_o'(a_n) > 0.$$

Fig. (*).

By the uniqueness of the Riemann Mapping Theorem, we conclude that

$$h_n = f_n \quad (n \geq N) \quad (3).$$

On the other hand, it is clear that g_n can be written as

$$g_n(z) = \frac{z-c_n}{1-c_nz} \quad (n \geq N),$$

and it follows that:

-22-
(B). The sequence \(\{ g_n \} \) converges uniformly to the identity function \(f_0(z) = z \), in the wider sense on \(\Omega \).

From the facts (A), (B) we know that the sequence \(\{ h_n \} \) \((n \geq N) \) converges uniformly to \(h_0 = f_0 \) in the wider sense on \(\Omega \). It follows from (3) that the sequence \(\{ F(a_n) \} \) converges to \(F(a_0) \) in \(\mathcal{F}(\Omega) \), and so the lemma is proved.

We shall show next the continuity of \(F^{-1} \).

LEMMA 4. \(F^{-1} \) is continuous mapping on \(\mathcal{F}(\Omega) \).

PROOF. We recall that \(\mathcal{F}(\Omega) \) is metric space and convergence of a sequence in \(\mathcal{F}(\Omega) \) is uniform in the wider sense on \(\Omega \). Then it is sufficient to show the sequential continuity of \(F^{-1} \).

Let \(\{ f_n \} \) be a sequence of elements of \(\mathcal{F}(\Omega) \) which converges to \(f_0 \in \mathcal{F}(\Omega) \).

Let \(a_0 = F^{-1}(f_0) \).

By the application of Hurwitz's Theorem [1] we conclude that evey sufficiently small neighborhood \(U \) of \(a_0 \) contains exactly one zero of each \(f_n \) for each \(n \geq N \).

Denote \(a_n = F^{-1}(f_n) \), \((n = 1, 2, 3, \ldots) \).

Then each \(a_n \) is a zero of \(f_n \), and by the Riemann Mapping Theorem the only zero. Hence, if \(n \geq N \), \(a_n \in U \), i.e.,

\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} F^{-1}(f_n) = a_0,
\]

and the continuity of \(F^{-1} \) is proved.

From these lemma, we obtain the following theorem:

THEOREM. \(\Omega \) and \(\mathcal{F}(\Omega) \) are homeomorphic.
REFERENCES

